

P-ONE

— The Pacific Ocean Neutrino Explorer — Matthias Danninger for the P-ONE Collaboration IPP 50th Anniversary Symposium

P-ONE — The current vision

P-ONE Collaboration, Nature Astronomy (2020)

Matthias Danninger | SFU 2022-05-29

Design inspired by existing experiments:

- Array of instrumented vertical lines (IceCube)
- Multi PMT optical sensors (KM3Net)
- Clustered deployment (GVD)

<u>What is different?</u>

P-ONE — The current vision

P-ONE Collaboration, Nature Astronomy (2020)

Design inspired by existing experiments:

- Array of instrumented vertical lines (IceCube)
- Multi PMT optical sensors (KM3Net)
- Clustered deployment (GVD)

<u>What is different?</u>

First Neutrino Telescope hosted by an existing large scale oceanographic infrastructure: **OCEAN NETWORKS CANADA**

OCEAN NETWORKS CANADA Discover the ocean. Understand the planet.

Explorer Plate

NEPTUNE Observatory

Clayoquot

Slope

250

Pacific Plate

Middle Valley

Cascadia Basin 2660 m

Juan de Fuca Plate Barkley Canyon 400-1000 m

Cascadia Basin node

- 2600m deep abyssal plain
- 2°C year-round
 - Low currents (0.1m/s)

➡ 840 km of underwater fibre optic cable

2022-05-29 | Matthias Danninger | SFU

VENUS Observatory

VANCOUVER ISLAND

An Initiative of the University of Victoria

2 P-ONE pathfinder missions (2018 & 2020)

- Cascadia Basin optically qualified
- Interface, anchoring and deployment operation by ONC
- JINST 14, P02013 (2019) and EPJC 81, 1071 (2021)

2018 11:36:57 Heading: 041 2018 R2080 Tully

2 P-ONE pathfinder missions (2018 & 2020)

- Cascadia Basin optically qualified
- Interface, anchoring and deployment operation by ONC
- JINST 14, P02013 (2019) and EPJC 81, 1071 (2021)

12743.9742W, 2661

2018 11:36:57 Heading: 041 2018 R2080 Fully

2 P-ONE pathfinder missions (2018 & 2020)

- Cascadia Basin optically qualified
- Interface, anchoring and deployment operation by ONC
- JINST 14, P02013 (2019) and EPJC 81, 1071 (2021)

- ~98% up time 4 years
- Measurement of ⁴⁰K and bioluminescence
- Low connector failure rate

127,43.9742W, 2661 2018 11:36:57 Heading: 041 2018 R2080 Tully

P-ONE — The current vision

P-ONE Collaboration, Nature Astronomy (2020)

Matthias Danninger | SFU 2022-05-29

A NEW MULTI-KM³ ν -TELESCOPE

SCALABLE TECHNOLOGY

Why a new neutrino telescope?

Matthias Danninger | SFU 2022-05-29

P-0

Neutrino telescope(s) sensitive to TeV-PeV cosmic neutrinos: only ONE

image E. Resconi

Why a new neutrino telescope?

2022-05-29 Matthias Danninger | SFU

P-ON

SIMON FRASER UNIVERSITY

image E. Resconi

2022-05-29 Matthias Danninger | SFU

SIMON FRASER images from SNOWMASS WP, arXiv:2203.08096

Why high-energy neutrinos

2022-05-29 Matthias Danninger | SFU

PoS(ICRC2021)1185

- P-ONE project status-

2022-05-29 | Matthias Danninger | SFU

Matthias Danninger | SFU 2022-05-29

P-ONE — time-line

- Partially funded by ERC (3 lines)
- 2022 CFI-IF in preparation (2 lines + crucial infrastructure)
- US-partner application to complete demonstrator

P-ONE demonstrator 2024 - 2027

P-ONE — time-line

- Partially funded by ERC (3 lines)
- 2022 CFI-IF in preparation (2 lines + crucial infrastructure)
- US-partner application to complete demonstrator

P-ONE demonstrator 2024 - 2027

P-ONE — time-line

Launch the *Pacific* Ocean Neutrino Experiment (P-ONE)

P-ONE — prototype line development (2024)

- Construction and deployment of a complete P-ONE mooring line
- Proof and verification of;
 - detector design
 - deployment techniques
 - positioning calibration

Optical Module | In development | 16 pcs

UNIVERSITY

P-ONE — prototype line (2023)

- Construction and deployment of a complete P-ONE mooring line
- Proof and verification of;
 - detector design
 - deployment techniques
 - positioning calibration

Optical Calibration

- Understanding ocean water is key to the success
- Synergy with IceCube

Calibration Module | Adapted POCAM | 4 pcs

2022-05-29

Matthias Danninger | SFU

Detected hits per pulse

R

2022-05-29 Matthias Danninger | SFU

<u>COMMISSIONING!</u> PROOF OF CONCEPT, SUCCESSFUL OPERATION 100% DUTY CYCLE

image adapted from E. Resconi

<u>COMMISSIONING!</u> PROOF OF CONCEPT, SUCCESSFUL OPERATION 100% DUTY CYCLE

CALIBRATION! IN-SITU BACKGROUNDS, DETECTORS, ATMOSPHERIC BACKGROUNDS

image adapted from E. Resconi

<u>COMMISSIONING!</u> PROOF OF CONCEPT, SUCCESSFUL OPERATION 100% DUTY CYCLE

<u>CALIBRATION!</u> IN-SITU BACKGROUNDS, DETECTORS, ATMOSPHERIC BACKGROUNDS

PHYSICS GOALS:
FIRST NEUTRINOS IN PACIFIC OCEAN
IMPLEMENTATION OF MULTI MESSENGER PROTOCOL
DEVELOPMENT OF ν-FLAVOUR PARTICLE ID

TRIGGER AN INTERNATIONAL EFFORT (P-ONE) SYNERGETIC OPERATION V-TELESCOPES

> SIMON FRASER image adapted from E. Resconi

Summary

- <u>Ocean Networks Canada</u> is an exciting opportunity for neutrino physics

- New Collaborators are welcome to join and support the efforts!

P-ONE

If you want to learn more: <u>https://www.pacific-neutrino.org/</u>

2022-05-29 Matthias Danninger | SFU

• <u>P-ONE</u> is an exciting project for Canadian-based leadership in neutrino physics Project is growing fast and we have a clear path towards a P-ONE demonstrator

Extras

Matthias Danninger | SFU TIPP 2021

OCEAN NETWORKS CANADA Discover the ocean. Understand the plane

Explorer

One of world's largest and most advanced cabled ocean observatory

• NEPTUNE observatory:

- completed in 2009
- 800km loop of fibre optic cable, data flow and power infrastructure
- designed for long-lived, highly reliable underwater operations
- high-speed data link (10GB/s)
- high power (at least 9 kW/node)

Fuca Plate

➡ 840 km of underwater fibre optic cable

2022-05-29 | Matthias Danninger | SFU

VENUS Observatory

"plug and play" basis allowing a highly modular deployment and maintenance

Key result 1: Attenuation length

- Measure Attenuation length in the water
- For different wavelength
- Constant over 2 years of measurements
- Optical properties are good!

Key result 2: ⁴⁰K in situ measurement

- Understanding the 40K background
- Natural in-situ calibration with K40 possible ${}^{40}{
 m K} \rightarrow {}^{40}{
 m Ca} + e^- + ar{
 u}_e$
- Cross-check of $_{\lambda_{att}}$ results, detector and site model

SDOM PMT housing Geant4 model

- Understanding the 40K background
- Natural in-situ calibration with K40 possible ${}^{40}{
 m K}
 ightarrow {}^{40}{
 m Ca} + e^- + ar{
 u}_e$
- Cross-check of λ_{att} results, detector and site model
- Consistent results!

P-ONE

Salinity from this work: 2.5±1.4% Salinity from ONC: 3.482±0.001% Salinity at ANTARES site: 3.844%

Key result 2: ⁴⁰K in situ measurement

Key result 3: Bioluminescence as expected

- Bioluminescence is modulated with the tides
- Constant over more than 2 years of operations —> no big bursts

The deep sea site of Cascadia basin is optically qualified to host P-ONE

2022-05-29 Matthias Danninger | SFU

P-ONE

Better characterization of Bioluminescence

- Measurement of wavelength dependent emission spectrum of bioluminescence with PMT spectrometers
- Comparison to detailed simulation of bioluminescence

Interdisciplinary: oceanography, microbiology, climate change related studies

Better characterization of Bioluminescence

Geometry calibration

First MCMC fit results – Symmetric geometries

Fitting posterior distributions

- Gaussian approximations
- Sigma + deviations = resolution
- (x,y) harder to calibrate than (z)

- POCAM Upgrade configuration
 - *1e11 photons / pulse increase challenging*
 - *Up to 10kHz baseline increase possible*
 - 405nm default 450nm available

Resolution ~5-30cm promising

Dependent on string positions + P-CAL placement

Photons in ice and water

HORIZONTAL HIGH ENERGY MUONS: THE SIGNATURE

1 PeV horizontal muon

medium: IceCube ice

P-ON K. Krings (TUM)

MON FRASER IVERSITY

