Université m de Montréal Alan Robinson May 29 2022 IPP 50th Anniversary Symp. #### Generation 2 search for low-mass dark matter ## SuperCDMS detector technology QET - Quasi-particle trap assisted Electrothermal feedback Transition edge sensor - Energy deposited in kg-scale detector concentrated on mg-scale sensors - 5-10 eV resolution for athermal phonons ### SuperCDMS detector technology #### SuperCDMS Tower: Up to 6 detectors stacked on a cryogenic stage CUTE tower ready for detector installation on Thursday First production tower in March ## SuperCDMS detector technology #### 2 flavours - iZIP: independant charge readout - HV: new optimized phonon resolution #### 2 materials - Si - Lower mass sensitivity - Ge - Larger exposure ### **Optimizing QETs** #### vs. previous SuperCDMS Soudan - Lower Tc - Resolution scales as T_c^3 - $(40 \text{ mK/} 90 \text{ mK})^3 = 0.09$ - Optimize geometry - More overlap between Al and W - Optimization for lower T_c - Eliminate charge readout (HV) #### Ionization in HV mode #### Athermal (high-frequency) phonons produced by - Heavy ion stopping - Neganov-Trofimov-Luke (NTL) effect - Energy released from charge drifted across the potential of the crystal. $$E_{phonon} = E_{recoil} + V \times n_{eh}$$ ### Demonstrated sensitivity #### Testing with g-sized detectors Electron/hole counting $$E_{phonon} = E_{recoil} + V \times n_{eh}$$ ### SuperCDMS SNOLAB backgrounds - Electron recoils (for which HV detectors are sensitive) - ⁻ ³H, ⁶⁰Co from cosmogenic activation - ⁻ Si from atmospheric deposition - Background energy differential rate reduced by ER/NR energy scale ratio - Radon deposition - Neutrons, cosmic rays - Minimized by shielding and siting at SNOLAB. ### SuperCDMS SNOLAB facility #### A campus for cryogenic dark matter detectors. - 6800 m.w.e. overburden - Capacity for 7 towers (4 initially, 31 w/ upgrades) - v-dominated NR bg - O(0.1) dru γ background - 15 mK base temperature #### A campus for cryogenic dark matter detectors - Low-radon clean-room - Collaborating with Cryogenic Underground TEst facility (CUTE) - Rapid-turn around detector testing - First data from SuperCDMS SNOLAB towers. | | | HV | 10 cm ³ | 3.3 | 4.5 | | | | | |--|---|-------|--------------------|-----|------|-----|------|------|-------| | | | | SNOLAB-sized | 12. | 21. | 4. | 6. | 0.6 | 0.7 | | | | iZIP | 10 cm ³ | 2.5 | 4.5 | 0.7 | 1.5 | | | | | | | SNOLAB-sized | 12. | 21. | 3.4 | 6. | | | | | | piZIP | 10 cm ³ | 3.3 | 4.5 | 1.2 | 1.5 | 0.19 | 0.21 | | | | | SNOLAB-sized | 12. | 21. | 4. | 6. | 0.6 | 0.7 | | | ionization energy resolution [eVee] | iZIP | 10 cm ³ | 50. | 60. | 17. | 17. | | | | | | piZIP | 10 cm ³ | 8. | 11. | 3. | 6. | 0.5 | 0.5 | | | | | SNOLAB-sized | 30. | 53. | 10. | 15. | 1.5 | 1.8 | | | ionization leakage
current [Hz/gm] | HV | | | 1.0 | | 0.1 | | 0.01 | | | impact ionization probability | HV | | | 0.02 | | 0.01 | | 0.01 | | | charge trapping probability | HV | | | 0.01 | | 0.01 | | 0.001 | | | Table 2: Detector upgrade scenarios. We provide the quantitative improvements for each detector type and size and for each scenario (Det A, Det B, Det C). These improvements are described in detail in \$2.1.4 The detector sizes are explained in \$2.1.2 The Det C 10 cm ³ piZIP scenarios are greyed out because the continuous ionization model used for the piZIP becomes invalid for such good effective ionization resolution. | | | | | | | | | Detector Type 0V Quantity phonon energy resolution [eV] Size 1 cm³ 10 cm³ Α Ge 4.5 Si 0.5 2.5 **Detector Upgrade Scenario** Ge 0.28 1.5 C Ge 0.14 Si 0.013 0.07 В Si 0.13 0.7 ## A campus for low-mass dark matter exploration - Pushing detector sensitivity - will cover motivated lowmass dark matter models - SNOWMASS CF1 arxiv: 2203.08463 ### A campus for low-mass dark matter exploration - Pushing detector sensitivity - will cover motivated light-dark matter models - SNOWMASS CF1 arxiv: 2203.08463 ### A campus for low-mass dark matter exploration - Pushing detector sensitivity - will cover motivated light-dark matter models - SNOWMASS CF1 arxiv: 2203.08463 # **Construction Progress** Construction through 2022-23 ## Understanding ~eV energy depositions - Lowest-energy calibrations of ionisation yield. - Modelling new effects 18 ## One giant leap in sensitivity at SNOLAB # An underground cryogenic campus Commissioning next year #### Ongoing efforts - Comprehensive prototyping - Off-site calibrations - Backgrounds mitigation - Opportunistic early DM searches