

Université m de Montréal

Alan Robinson May 29 2022 IPP 50th Anniversary Symp.

Generation 2 search for low-mass dark matter

SuperCDMS detector technology

QET - Quasi-particle trap assisted Electrothermal feedback Transition edge sensor

- Energy deposited in kg-scale detector concentrated on mg-scale sensors
- 5-10 eV resolution for athermal phonons

SuperCDMS detector technology

SuperCDMS Tower: Up to 6 detectors stacked on a cryogenic stage

CUTE tower ready for detector installation on Thursday

First production tower in March

SuperCDMS detector technology

2 flavours

- iZIP: independant charge readout
- HV: new optimized phonon resolution

2 materials

- Si
 - Lower mass sensitivity
- Ge
 - Larger exposure

Optimizing QETs

vs. previous SuperCDMS Soudan

- Lower Tc
 - Resolution scales as T_c^3
 - $(40 \text{ mK/} 90 \text{ mK})^3 = 0.09$
- Optimize geometry
 - More overlap between Al and W
 - Optimization for lower T_c
- Eliminate charge readout (HV)

Ionization in HV mode

Athermal (high-frequency) phonons produced by

- Heavy ion stopping
- Neganov-Trofimov-Luke (NTL) effect
 - Energy released from charge drifted across the potential of the crystal.

$$E_{phonon} = E_{recoil} + V \times n_{eh}$$

Demonstrated sensitivity

Testing with g-sized detectors

Electron/hole counting

$$E_{phonon} = E_{recoil} + V \times n_{eh}$$

SuperCDMS SNOLAB backgrounds

- Electron recoils (for which HV detectors are sensitive)
 - ⁻ ³H, ⁶⁰Co from cosmogenic activation
 - ⁻ Si from atmospheric deposition
 - Background energy differential rate reduced by ER/NR energy scale ratio
- Radon deposition
- Neutrons, cosmic rays
 - Minimized by shielding and siting at SNOLAB.

SuperCDMS SNOLAB facility

A campus for cryogenic dark matter detectors.

- 6800 m.w.e. overburden
- Capacity for 7 towers (4 initially, 31 w/ upgrades)
- v-dominated NR bg
- O(0.1) dru γ background
- 15 mK base temperature

A campus for cryogenic dark matter detectors

- Low-radon clean-room
- Collaborating with Cryogenic Underground TEst facility (CUTE)
 - Rapid-turn around detector testing
 - First data from SuperCDMS SNOLAB towers.

		HV	10 cm ³	3.3	4.5				
			SNOLAB-sized	12.	21.	4.	6.	0.6	0.7
		iZIP	10 cm ³	2.5	4.5	0.7	1.5		
			SNOLAB-sized	12.	21.	3.4	6.		
		piZIP	10 cm ³	3.3	4.5	1.2	1.5	0.19	0.21
			SNOLAB-sized	12.	21.	4.	6.	0.6	0.7
	ionization energy resolution [eVee]	iZIP	10 cm ³	50.	60.	17.	17.		
		piZIP	10 cm ³	8.	11.	3.	6.	0.5	0.5
			SNOLAB-sized	30.	53.	10.	15.	1.5	1.8
	ionization leakage current [Hz/gm]	HV			1.0		0.1		0.01
	impact ionization probability	HV			0.02		0.01		0.01
	charge trapping probability	HV			0.01		0.01		0.001
	Table 2: Detector upgrade scenarios. We provide the quantitative improvements for each detector type and size and for each scenario (Det A, Det B, Det C). These improvements are described in detail in \$2.1.4 The detector sizes are explained in \$2.1.2 The Det C 10 cm ³ piZIP scenarios are greyed out because the continuous ionization model used for the piZIP becomes invalid for such good effective ionization resolution.								

Detector

Type

0V

Quantity

phonon energy resolution [eV]

Size

1 cm³

10 cm³

Α

Ge

4.5

Si

0.5

2.5

Detector Upgrade Scenario

Ge

0.28

1.5

C

Ge

0.14

Si

0.013

0.07

В

Si

0.13

0.7

A campus for low-mass dark matter exploration

- Pushing detector sensitivity
 - will cover motivated lowmass dark matter models
 - SNOWMASS CF1 arxiv: 2203.08463

A campus for low-mass dark matter exploration

- Pushing detector sensitivity
 - will cover motivated light-dark matter models
 - SNOWMASS CF1 arxiv: 2203.08463

A campus for low-mass dark matter exploration

- Pushing detector sensitivity
 - will cover motivated light-dark matter models
 - SNOWMASS CF1 arxiv: 2203.08463

Construction Progress

Construction through 2022-23

Understanding ~eV energy depositions

- Lowest-energy calibrations of ionisation yield.
- Modelling new effects

18

One giant leap in sensitivity at SNOLAB

An underground cryogenic campus

Commissioning next year

Ongoing efforts

- Comprehensive prototyping
- Off-site calibrations
- Backgrounds mitigation
- Opportunistic early DM searches

