
2024-05-13 Remington Hill – Queen’s University 1

Remington Hill

Contact Info: remington.hill@queensu.ca

Supervisor: Dr. Stephen Sekula

Queen’s University

May 8th, 2024

An Introduction to C++

from if statements, functions, classes, libraries, to

building your own interactive story driven game.

mailto:remington.hill@queensu.ca

Outline

• Introduction.

• Formatting.

• Compiler(s).

• Libraries.

• Namespaces.

• Control statements (if, else,
while, etc.).

• Functions.

• Classes.

• Vectors

• Zork project

2024-05-13 Remington Hill – Queen’s University 2

What is and what isn’t this talk?

• This is not a formal lecture on C++.
• I am not a computer scientist.

• I assume that each of you have no experience coding in C++.
• If you have experience in C++, there is a 85% chance I put you to sleep.

• My hope is that after today, you have enough of the basics to do the
following:
• Understand collaboration analysis tools and write code in the existing

framework.
• Run Geant4 simulations (or other equivalent C++ simulations).

• A couple of questions before we get started:
• How many of you have taken a computer science course before?
• How many of you have written software in C++ before?

• Be honest! No judgement. I am using this to gauge pace.

• Who has written in Python before?

2024-05-13 Remington Hill – Queen’s University 3

Introduction

• My name is Remington W. Hill.

• First year PhD Student at Queen’s
University (Sept. 2023).

• Supervisor: Dr. S. Sekula.
• Working on commissioning PICO-500

and analyzing PICO-40L data.

• I did my MSc at Laurentian University.
• Supernova neutrino detection

(Supervisor: Dr. C. Virtue).

• You can find me in Sudbury at SNOLAB
(2nd floor cubical space, C15).

• Hobbies:
• Baking and cooking .
• Reading (sci-fi/fantasy, history, etc.).
• Walking my dog on the local trails in

Sudbury.
• I enjoy playing and watching chess (the

most recent candidates was
spectacular).

2024-05-13 Remington Hill – Queen’s University 4

Some general remarks

• Don’t be afraid to ask for help!
• Can always speak to your coworkers, supervisor, etc.
• If you need help, I can be reached at remington.hill@queensu.ca or at C-15 on

the 2nd floor at SNOLAB (for those who are on site this summer).

• You are going to make mistakes; learn from them.
• Here are my highlights:

• 2018: Undeclared variable I assumed was out of scope, turned out to be spelt wrong.
• 2019: Insufficient memory storage resulting in me creating 4-5 TBs of data and

crashing my simulation.

• Make sure you keep a good reference handy.
• I use “C++: How to program” by Deitel and Deitel (in fact, most examples in

this talk are largely inspired by this textbook, as well as last years talk by J.
Hucker).

• Understanding the limits of googling and using someone else's code.
• Stack overflow is an asset. However, do not just copy the code without

understanding why it is written the way that it is.
• This will make you a better programmer. Will also help with readability;

whomever takes over your code will thank you.

2024-05-13 Remington Hill – Queen’s University 5

mailto:remington.hill@queensu.ca

C++ structure

• Every line must be ended with a semi-colon* (;).

• Variable types need to be specified upon declaration.
• Is it an int, double, float, TFile, TTree, G4int? You need to tell the compiler.

• Indentation is optional; however, please respect your fellow
programmers.
• When entering a conditional statement, class, struct, etc. it is good practice

to increase the indentation by 1 tab or 4 spaces.

• Make sure you leave useful comments.
• Each of you will work on code that someone else will then use (potentially).
• Do not make them pull there hair out.
• For today only, I am breaking this rule to avoid clutter.

• Choose appropriate variable names.
• Do not store an energy value in a float called “temp”.

• This means nothing.

• Suppose you were looking to store both the electrical charge of an electron,
and the permittivity of free space, what would be a good name for each?

2024-05-13 Remington Hill – Queen’s University 6

* Here, when we say every line, we exclude control
operators such as if, else, while, etc. Classes, structs

(see later slides), will require semi-colons.

A classic example
• The first thing you, as a programmer, will typically do in a new

language is print the classic, “Hello World”.
• What does this look like in C++?

2024-05-13 Remington Hill – Queen’s University 7

A classic example
• The first thing you, as a programmer, will typically do in a new

language is print the classic, “Hello World”.
• What does this look like in C++?

2024-05-13 Remington Hill – Queen’s University 8

The method to include standard
libraries or your files.

If enclosed by < >, compiler
will look in your path for the

library.

If included by double quotes
(i.e. #include “experiments.h”),

local directories are checked.

A classic example
• The first thing you, as a programmer, will typically do in a new

language is print the classic, “Hello World”.
• What does this look like in C++?

2024-05-13 Remington Hill – Queen’s University 9

Tells the compiler which namespace
is being used throughout program.

For example, cout and endl belong
to the std namespace.

This line allows us to use these two
functions without specifying their

namespace.

Without this line, all calls to
functions of this namespace need to

include std::

A classic example
• The first thing you, as a programmer, will typically do in a new

language is print the classic, “Hello World”.
• What does this look like in C++?

2024-05-13 Remington Hill – Queen’s University 10

This is the main function; it is the entry
point for your C++ program.

Every function will have its arguments
defined in (), and be closed by {}.

Function definitions before this will not
be called or used unless called within

the main() function.

int tells the compiler that this function
returns an int value when it exits.

Can return any type (double, int,
vector<int>, etc.).

A classic example
• The first thing you, as a programmer, will typically do in a new

language is print the classic, “Hello World”.
• What does this look like in C++?

2024-05-13 Remington Hill – Queen’s University 11

Print to the terminal the string
“Hello World”.

cout and endl are objects from
std; more on this later (see

Namespaces).

cout stands for ‘character
output’. endl ends the current

line.

A classic example
• The first thing you, as a programmer, will typically do in a new

language is print the classic, “Hello World”.
• What does this look like in C++?

2024-05-13 Remington Hill – Queen’s University 12

Return value of the function.

Returning zero tells the compiler
that main exited without issue.

Any other value is some error status
you need to identify.

User defined functions return
whatever the user provides and

Compiling
• How do we run this code?

• Will need to convert this from human readable to machine readable.

• Right now, we have what is often referred to as the source code.
• For most daily applications, you don’t have access to this (i.e. whatever

video games you are playing right now).

• To get the machine readable file, also called the executable, we must
look to compiling this C++ script.

2024-05-13 Remington Hill – Queen’s University 13

Courtesy of
icarus.cs.weber.edu.• Preprocessor: process all

statements with #; copies C++
statements to temp. files.

• Compiler: translates source code to
machine code.

• Linker: will link together object
code files (headers, more on this
later).

Compiling pt. 2

• Here, we are going to use the command line and g++ (on LINUX).

• To compile, run:

• This will yield an executable of the name “Hello_World”.
• It is fairly standard to use the same source code name, but drop the file extension.
• If no name is supplied, default is a.out.

• There are other arguments that can be included:
• You will most certainly use –I/path/to/headers/, which tells the compiler to include the

supplied directory.

• To run this file, simply put:

• If you do not have access to the command line and g++ today (or a windows
compiler), can use this: https://www.programiz.com/cpp-programming/online-
compiler/

• A temporary solution; you should seek access to a permanent solution.

• For large files or projects, I encourage you to use ‘make’ (or GNUmake).
• Will automatically check which parts of the code need updating.
• i.e. unchanged files are not recompiled.
• You can find documentation here:

https://www.gnu.org/software/make/manual/make.html.

2024-05-13 Remington Hill – Queen’s University 14

https://www.programiz.com/cpp-programming/online-compiler/
https://www.gnu.org/software/make/manual/make.html

Data types
• C++ requires you

to be exact when
defining variables.
• You must tell

the machine
what it is
handling.

• So what are they?

• Declaration: this is
telling the
compiler what the
name and data
type of your
variable is.

• Initialization: This
is supplying an
initial value to the
variable.

2024-05-13 Remington Hill – Queen’s University 15

Courtesy of go4expert.

Namespaces

2024-05-13 Remington Hill – Queen’s University 16

• What are namespaces?
• Suppose you include two header files,

Alice.h and Bob.h.
• Each are a different namespace.
• They both function within them called

person().
• How do we specify which one we are

using?

• Namespaces: define the scope where
global identifiers and global variables
are placed.
• I.e. Within the namespace, Alice, access

to all identifiers is possible.

• To use functions within a namespace,
two approach's.
• Specify namespace followed by function

or variable name (Alice::person()).
• Or use the namespace (see left).

Control statements

2024-05-13 Remington Hill – Queen’s University 17

• Control statements allow you to
control where a program will go
and what actions it will take.

• The most common are:

if (condition){..code..}

else if (condition){..code..}

else{..code..}

for(start; stop; increment){..code..}

while (start/condition){..code..}

do while(condition){..code..}

• Examples of each can be found on
the right.
• There are critical differences

between all of them (lets
discuss).

Find the errors!
• We should have enough information to now begin to identify errors

in the code.
• There are 5/6 errors in the code below.

• Take 1-2 minutes amongst yourself to identify what they are.

2024-05-13 Remington Hill – Queen’s University 18

Corrected code

2024-05-13 Remington Hill – Queen’s University 19

1) Missing variable type in declaration.

6) Missing return statement.
(This technically won’t give an error

message, but good practice is to always
return a value for non-void functions)

2/3) Missing namespace identifier(s).

4) Missing semi-colon at the end of the line.

5) No increment resulting in infinite loop.

Listen to your compiler!
• Listen to your compiler.

• If the compiler encounters an error, it will be very explicit on where it is.

• Let us look at the log from our previous example.

• Some things it won’t catch (i.e. infinite loop; that is your responsibility!).

2024-05-13 Remington Hill – Queen’s University 20

Command Line / User Inputs

• Yesterday, you would have learned how to navigate the command
line at Mark’s talk.
• I will assume you are familiar with the basics.

• Suppose I wanted to check which two numbers, 𝑎 and 𝑏, was smaller.
• Can I avoid having to recompile each time? Yes.

• Two solutions we will cover:

• Command line arguments

• User input during execution (cin).

• For command line arguments, modify the main function to include
two arguments (which we will talk about later):

2024-05-13 Remington Hill – Queen’s University 21

Command line
(cont.)

• The code on the right
will take two integers
as inputs.

• It then uses three
conditional
statements to check if:
• a < b
• a > b
• a == b

• The pointer to the
array of argv[] needs
to be converted to the
appropriate type.
• atoi() for ints.
• atof() for doubles.

• argv[0] is the filename
of the executable.

2024-05-13 Remington Hill – Queen’s University 22

Character inputs

• Another variation of this
program is character input.
• Called cin; opposite of cout.

• Like cout, it is apart of the
iostream header.

• This asks the user for input
during execution.

• The general structure is to
declare some variable of a given
type, then use the overloaded
cin operator to store it

• Let us see this in action.

2024-05-13 Remington Hill – Queen’s University 23

Exercise (basic intro.)

• Take the next 5 minutes to do the following:
• Write a program that asks the user for two numbers.

• Stipulate that the one number must be greater than the other.

• Loop over the range that these two numbers span (incrementing by 1 at
each step).

• At each point, compute the product of the increment and upper bound
and output the information to the terminal to update the user.

• BONUS: Instead of printing the product, cout the division and the
remainder for the two numbers. For the remainder, you will need to use
the % operator.

2024-05-13 Remington Hill – Queen’s University 24

Functions

• Thus far, we have made use of
functions from the standard library.
• You are free to create your own.

• As is the case with our main, our
custom functions will have the
following format:

type function_name(args){}

• type: Denotes the type of value
returned by the function.

• function_name: The name you give to
the function.

• args: the arguments supplied to the
function (types must be specified
and separated by commas).

• Lets talk about some of the examples
on the right.

2024-05-13 Remington Hill – Queen’s University 25

Question time!
• Will the following code give me an error during compilation?

2024-05-13 Remington Hill – Queen’s University 26

NO!

Function
overloading

• Function overloading is a
method of having the same
function name but with
different arguments.

• This is allowed, if and only
if, there arguments are
different.
• Compiler will look for

appropriate function
call.

• An unrealistic example is
on the right.
• In practice, a sum

function for array or
vector of length N
would be used.

• See this in ROOT, Geant4,
etc. very often.
• TH1, Tfile, TTree,

TBranch.

2024-05-13 Remington Hill – Queen’s University 27

Function
prototyping
• Something you will encounter

when working with classes is
function prototyping.
• A method of defining a

function and its arguments
prior to specifying its
operation.

• Useful for when functions
depend on one another.
• Or for the sake of tidiness, a

class is defined in a header
file outside the current file.

2024-05-13 Remington Hill – Queen’s University 28

Namespaces
pt. 2
• You can create your own

namespace.

• Suppose you have a set
of custom functions that
you use in your analysis.
• Can place these in a

header file and
include this in future
analysis to have access
to the functions.

• To define a namespace:

namespace nsp_name{..code..}

• An example is on the
right.

2024-05-13 Remington Hill – Queen’s University 29

Main namespace
(analysis).

Nested namespace
(sub_analysis).

sub_analysis has
access to members

of analysis.

A brief aside on scope

• Let’s talk about scope.

• You might often hear programmers talk
about scope. What does this mean?

• Scope tells us where a function, variable,
struct, class, is or is not defined.

• We saw earlier namespaces, functions:
• The rule of thumb is that when a variable is

defined within one of these, it is local to this
scope.

• You cannot access it outside of this
namespace of function.

• It is good practice to avoid global variables.

2024-05-13 Remington Hill – Queen’s University 30

Scope error

• Let us take a
couple minutes
to find the scope
error.

• Where is the
error?

2024-05-13 Remington Hill – Queen’s University 31

FOUND IT!
If we try to

declare that d is
equal to a, the
compiler will

recognize that a
is “not declared
in this scope”.

Exercise

• Take the next 10 minutes to do the following:
• Write a program that prompts the user for two numbers.

• The first will be a lower limit and the second will be an upper limit.

• Create a function, some kind of polynomial (𝑖. 𝑒. 𝑓 𝑥 = 2𝑥2 + 3𝑥 − 12).

• Use the function you have created, as well as a loop of your choice to
evaluate the function at every point across range.

• BONUS: Compute the average value of the function on this interval.:

• Remember that the average value of a function is obtained through the
mean value theorem.

1

(𝑏 − 𝑎)
න

𝑏

𝑎

𝑓 𝑥 = 𝑓 𝑐

• Don’t bother numerically integrating the function, just use the fact it is a
simple polynomial to find the anti-derivative.

2024-05-13 Remington Hill – Queen’s University 32

Arrays and vectors

• Vectors and arrays serve a similar function.
But are vastly different in execution.

• Both can store multiple instances of the
same type (i.e. int, double, etc.).

• Arrays are static entities (like structs).
• This means that they cannot change size

after declaration.
type array_name[size];

• Vectors are dynamically sized entities.
• They can change size after declaration

(although, be careful of memory
constraints).

std::vector<type> vector_name;

• Each have their own respective functions.
• std::vector reference

(https://cplusplus.com/reference/vector/v
ector/).

• std::array reference
(https://en.cppreference.com/w/cpp/cont
ainer/array).

2024-05-13 Remington Hill – Queen’s University 33

https://cplusplus.com/reference/vector/vector/
https://en.cppreference.com/w/cpp/container/array

Structs

• “Structures are aggregate data types”.
• Another way of saying collection.

• What are some examples of
‘structures’ in real life?
• A person.

• Height, name, hair colour, etc.

• A SNOLAB experiment.
• Mass, live time, sensitivity, etc.

• Any others?

• General structure for a struct is:

struct struct_name{..code..};

• Do not forget the semi-colon!

• Let us go through this example.

2024-05-13 Remington Hill – Queen’s University 34

Classes

• Classes are a more complicated struct.
• Very similar construction.

• They allow you to privatize or publicize variables and functions.

• Like structs, classes have an optional requirement(s):
• Constructor: allows the user to specify what functions are called,

variables are set, etc. when the class object is first created.
• Destructor: allows the user to specify what happens to the class

variables at the end of the program.
• We won’t talk about this much here.

• Let us consider an example:
• Suppose we wanted to create a class that represented each

experiment at SNOLAB.
• What sort of variables, functions, etc. would we need?

• Let us do this together!

2024-05-13 Remington Hill – Queen’s University 35

Zork project! (30 minutes)

• Ever heard of Zork?
• Text-based adventure game; released back

in the 1970s and 80s.

• Design a program that includes the
following:
• Create a C++ class for the character.

• Include health, attributes, items.

• Create a set of narrative conditions that asks
the user to choose what to do.

• Each narrative condition can be represented
by a function.

• Use control statements to change to
different functions.

• Make sure to ask for user input at each step.
• In the time that you have, try and have at

least three prompts; update you character if
they take damage, acquire an item, etc.

• I will be walking around and helping.
• Feel free to work in groups.

2024-05-13 Remington Hill – Queen’s University 36

Conclusions

• Throughout this talk we have established the basics of how to write in
C++.
• We looked at the different data types in C++ and how to perform basic

numerical operations on them.
• We established some of the basics for defining your own functions, while

also talking about prototyping and overloading.
• Arrays and vectors were introduced to give you an introduction on where

each might be more appropriate or better to use.
• We discussed classes and structs that will allow you to interpret more

complex C++ code and organize your own analysis work.

• I strongly encourage you to all attend the talk by Philippe next week on
ROOT.
• Between now and then play around with C++ and see if you can begin to

write more complex scripts.
• ROOT is a toolset used by many experiments; it will help to have experience

with it.

• If you ever have any questions or comments, feel free to stop by my
cubical or reach out via email: remington.hill@queensu.ca.

2024-05-13 Remington Hill – Queen’s University 37

mailto:remington.hill@queensu.ca

Thank you for listening! Questions?

2024-05-13 Remington Hill – Queen’s University

38

38

