An Introduction to C++

from if statements, functions, classes, libraries, to
building your own interactive story driven game.

Remington Hill

Contact Info: remington.hill@gueensu.ca

Supervisor: Dr. Stephen Sekula
Queen’s University

May 8th, 2024

UNIVERSITY

2024-05-13

mailto:remington.hill@queensu.ca

Outline

* Introduction.

* Formatting.
* Compiler(s).
 Libraries.

* Namespaces.

* Control statements (if, else,
while, etc.).

 Functions.
* (Classes.

 Vectors

e Zork project

2024-05-13

What 1s and what i1sn’t this talk?

This is not a formal lecture on C++.
* [am nota computer scientist.

[assume that each of you have no experience coding in C++.
 If you have experience in C++, there is a 85% chance I put you to sleep.

* My hope is that after today, you have enough of the basics to do the
following:

* Understand collaboration analysis tools and write code in the existing
framework.

* Run Geant4 simulations (or other equivalent C++ simulations).

* A couple of questions before we get started:
* How many of you have taken a computer science course before?
* How many of you have written software in C++ before?
* Be honest! No judgement. I am using this to gauge pace.
* Who has written in Python before?

Introduction

* My name is Remington W. Hill.

* First year PhD Student at Queen’s
University (Sept. 2023).

* Supervisor: Dr. S. Sekula.
* Working on commissioning PICO-500
and analyzing PICO-40L data.
* Idid my MSc at Laurentian University.
* Supernova neutrino detection
(Supervisor: Dr. C. Virtue).

* You can find me in Sudbury at SNOLAB
(2" floor cubical space, C15).

* Hobbies:
* Baking and cooking .
* Reading (sci-fi/fantasy, history, etc.).

* Walking my dog on the local trails in
Sudbury.

* lenjoy playing and watching chess (the
most recent candidates was
spectacular).

2024-05-13

T

[

X

Some general remarks

Don’t be afraid to ask for help!
* (Can always speak to your coworkers, supervisor, etc.

* Ifyou need help, I can be reached at remington.hill@gueensu.ca or at C-15 on
the 274 floor at SNOLAB (for those who are on site this summer).

You are going to make mistakes; learn from them.
* Here are my highlights:
e 2018: Undeclared variable I assumed was out of scope, turned out to be spelt wrong.
« 2019: Insufficient memory storage resulting in me creating 4-5 TBs of data and

crashing my simulation.
* Make sure you keep a good reference handy.

* T use “C++: How to program” by Deitel and Deitel (in fact, most examples in
glis 1t<all§ are largely inspired by this textbook, as well as last years talk by].
ucker).

Understanding the limits of googling and using someone else's code.

 Stack overflow is an asset. However, do not just copy the code without
understanding why it is written the way that it is.

* This will make you a better programmer. Will also help with readability;
whomever takes over your code will thank you.

mailto:remington.hill@queensu.ca

* Here, when we say every line, we exclude control
operators such as if, else, while, etc. Classes, structs

C_l_—l- Structure (see later slides), will require semi-colons.

Every line must be ended with a semi-colon” ().

Variable types need to be specified upon declaration.
* Isitanint, double, float, TFile, TTree, G4int? You need to tell the compiler.

Indentation is optional; however, please respect your fellow
programmers.
* When entering a conditional statement, class, struct, etc. it is good practice

to increase the indentation by 1 tab or 4 spaces.
Make sure you leave useful comments.
* Each of you will work on code that someone else will then use (potentially).
* Do not make them pull there hair out.
* For today only, [am breaking this rule to avoid clutter.

Choose appropriate variable names.
* Do not store an energy value in a float called “temp”.

* This means nothing.

* Suppose you were looking to store both the electrical charge of an electron,
and the permittivity of free space, what would be a good name for each?

A classic example

* The first thing you, as a programmer, will typically do in a new
language is print the classic, “Hello World".

e What does this look like in C++7?

hello_world.cpp > ...
#include <iostream>

cout << "Hello World"” << endl;

return @;

2024-05-13

A classic example

* The first thing you, as a programmer, will typically do in a new
language is print the classic, “Hello World".

e What does this look like in C++7?

hellgoverldiepptam
ginclude <iostream> The method to include standard
libraries or your files.

using namespace std;

it main(){ If.encloseld by < >, compiler
will look in your path for the

cout << "Hello World” << endl; library.
: return 9; If included by double quotes

(i.e. #include “experiments.h”),
local directories are checked.

2024-05-13 " RemingtonHill - Queer’sUniversity . 8

A classic example

* The first thing you, as a programmer, will typically do in a new
language is print the classic, “Hello World".

e What does this look like in C++7?

hello_world.cpp > ... Tells the compiler which namespace
#include <iostream> is being used throughout program.
using namespace std; For example, cout and endl belong

to the std namespace.
int main(){
This line allows us to use these two
functions without specifying their
namespace.

cout << "Hello World"” << endl;

return @;

Without this line, all calls to
functions of this namespace need to
include std::

2024-05-13 " RemingtonHill - Queer’sUniversity . 9

A classic example

* The first thing you, as a programmer, will typically do in a new
language is print the classic, “Hello World".

e What does this look like in C++7?

This is the main function; it is the entry
hello_world.cpp 2 ... point for your C++ program.
#include <iostream>»

R Every function will have its arguments
using namespace std; defined in (), and be closed by {}.
tnt main(){ Function definitions before this will not

be called or used unless called within

cout << "Hello World"” << endl;) _
the main() function.

return @;
} int tells the compiler that this function
returns an int value when it exits.

Can return any type (double, int,
vector<int>, etc.).

2024-05-13 " RemingtonHill - Queer’sUniversity . 10

A classic example

* The first thing you, as a programmer, will typically do in a new
language is print the classic, “Hello World".

e What does this look like in C++7?

hello_world.cpp > ...
#include <iostream> Print to the terminal the string

“Hello World”.

using namespace std;

cout and endl are objects from

int main(){ i
std; more on this later (see
cout << "Hello World” << endl; Namespaces).
SEENI G cout stands for ‘character

output’ endl ends the current
line.

2024-05-13 " RemingtonHill - Queer’sUniversity . 11

A classic example

* The first thing you, as a programmer, will typically do in a new
language is print the classic, “Hello World".

e What does this look like in C++7?

hello_world.cpp > ... Return value of the function.
#include <lostream>
Returning zero tells the compiler
using namespace std; that main exited without issue.

int main(){ Any other value is some error status
you need to identify.
cout << "Hello World"” << endl;
User defined functions return

return @; .
’ whatever the user provides and

2024-05-13 12

Compiling

e How do we run this code?
* Will need to convert this from human readable to machine readable.

Right now, we have what is often referred to as the source code.

* For most daily applications, you don’t have access to this (i.e. whatever
video games you are playing right now).

» To get the machine readable file, also called the executable, we must

look to compiling this C++ script.

* Preprocessor: process all
statements with #; copies C++
statements to temp. files.

» Compiler: translates source code to
machine code.

 Linker: will link together object
code files (headers, more on this
later).

2024-05-13

Source Code

Courtesy of
icarus.cs.weber.edu.

Linker

Preprocessor Compiler or
Loader (Id)

Compiler -

(Machine
Code)

2024-05-13

Compiling pt. 2

Here, we are going to use the command line and g++ (on LINUX).
LRGN IHIC : \Users\User>g++ Hello_World.cpp -o Hello_World|

This will yield an executable of the name “Hello_World".
» Itis fairly standard to use the same source code name, but drop the file extension.
* Ifno name is supplied, default is a.out.

There are other arguments that can be included:

* You will most certainly use -1/path/to/headers/, which tells the compiler to include the
supplied directory.

To run this file, simply put: (SRS AN S AR

If you do not have access to the command line and g++ today (or a windows
compiler), can use this: https://www.programiz.com/cpp-programming/online-
compiler/

* A temporary solution; you should seek access to a permanent solution.

For large files or projects, I encourage you to use ‘make’ (or GNUmake).
* Will automatically check which parts of the code need updating.
* i.e.unchanged files are not recompiled.

* You can find documentation here:
https://www.gnu.org/software /make /manual /make.html.

https://www.programiz.com/cpp-programming/online-compiler/
https://www.gnu.org/software/make/manual/make.html

Data types

* C++ requires you
to be exact when
defining variables.

* You must tell
the machine
what it is
handling.

* So what are they?

* Declaration: this is
telling the
compiler what the
name and data
type of your
variable is.

» [Initialization: This
is supplying an
initial value to the
variable.

2024-05-13

Key word Size in Interpretation| Possible values
bytes
bool | boolean true and false
unsigned char | Unsigned character 0to 255
char (or signed char) | Signed character -128 to 127
wchar t 2 Wide character (in windows, same 0to 2'"-1
as unsigned short)
short (or signed short) 2 Signed integer 21027 -1
unsigned short 2 Unsigned short integer 0to2"-]
int (or signed int) 4 Signed integer -2%to 27 -]
unsigned int 4 Unsigned integer Oto 2%-1
Long (or long int or 4 signed long integer -2%to 27 -]
signed long)
unsigned long unsigned long integer 0to2%-1
float Signed single precision floating | 3.4*10"to 3.4*10"*(both
point (23 bits of significand, 8 bits positive and negative)
of exponent, and 1 sign bit.)
long long 8 Signed long long integer 210 2% -1
unsigned long long 8 Unsigned long long integer 0to 2™ -1
double 8 Signed double precision floating 1.7¥10""to 1.7*10™"
point{52 bits of significand, 11 bits (both positive and
of exponent, and 1 sign bit.) negative)
long double 8 Signed double precision floating 1.7¥10""to 1.7*10™"

point(52 bits of significand, 11 bits
of exponent, and 1 sign bit.)

(both positive and
negative)

Courtesy of godexpert.

Namespaces

hello_world_no_namespace.cpp > & main() ° What are namespaces?
#include <iostream ; :
HeTHaE sostres » Suppose you include two header files,
Alice.h and Bob.h.
* Each are a different namespace.
int main()f They both function within them called
std::cout << "Hello World" << std::endl; person(). . .
* How do we specify which one we are
9 return @; USIDg?
: * Namespaces: define the scope where
hello_world.cpp > . global identifiers and global variables
#include <iostream> dare placed.
i mecoace ctds * Le. Within the namespace, Alice, access
5 famespace SHe to all identifiers is possible.
int main(){ » To use functions within a namespace,

two approach's.

 Specify namespace followed by function
return or variable name (Alice::person()).

¥ * Or use the namespace (see left).

cout << "Hello World" << endl;

2024-05-13 " RemingtonHill - Queer’sUniversity . 16

Control statements

 Control statements allow you to
control where a program will go
and what actions it will take.

 The most common are:
if (condition){..code..}
else if (condition){..code..}
else{..code..}
for (start; stop, increment){..code..}
while (start/condition){..code..}
do while (condition){..code..}

* Examples of each can be found on
the right.

* There are critical differences
between all of them (lets
discuss).

2024-05-13

#include <iostream>

using namespac

int main(){

int a
int b

if (a < b) cout <<

e std;

"a < b" << en

else if (a > b) cout << "a > b"

else
cout

<<

<<

"
d

"o
d

(a<b);

return @;

b"

<< endl;

" << a << endl;

" << a << endl;

1; a < b; a++){
" << a << endl;

<<

",
d

dl;
<< endl;

Find the errors!

* We should have enough information to now begin to identify errors
in the code.

* There are 5/6 errors in the code below.
* Take 1-2 minutes amongst yourself to identify what they are.

etiquette_example_1.cpp > & main()
#include <iostream>

int main()H{
a = 50;

while (a < 100){

cout << "a = << a << endl
.
I

11 |}

2024-05-13

18

Corrected code

etiquette_example_1_corrected.cpp > & main()

#include <iostream>
1) Missing variable type in declaration.

int main()H{

int a = 50; 2/3) Missing namespace identifier(s).

while (a < 100){
std::cout << "a = " << a << std::endl;

a++; 4) Missing semi-colon at the end of the line.

Nt

5) No increment resulting in infinite loop.
13 return @;

6) Missing return statement.
(This technically won't give an error
message, but good practice is to always
return a value for non-void functions)

Listen to your compiler!

 Listen to your compiler.
 If the compiler encounters an error, it will be very explicit on where it is.

* Letuslook at the log from our previous example.
« Some things it won't catch (i.e. infinite loop; that is your responsibility!).

(base) [rhill@nearline-login EIEIOO 2024]$% g++ etiquette example 1.cpp -o etiquette example 1
etiquette_example_1.cpp: In function ‘int main()’:

etiquette_example_1.cpp:5:5: ‘a’ was not declared in this scope
5 | = 50;
I
etiquette_example_1.cpp:8:9: ‘cout’ was not declared in this scope; did you mean ‘std::cout’?
8 | << "a =" << a << endl

In file included from etiquette_example_1.cpp:1:
/cvmfs/soft. computecanada. ca/easybuild/software/2020/Core/gcccore/9.3.08/include/c++/9.3.8/iostream:61:18: note: ‘std::cout’ declared here
61 | extern ostream cout; /// Linked to standard output
| AMMM
etiquette_example_1.cpp:8:32: ‘endl’ was not declared in this scope; did you mean ‘std::endl’?
8 | cout << "a = " << a <«

In file included from fcvmfs/soft.computecanada.ca/easybuild/software/2020/Core/gcccore/9.3.8/include/c++/9.3.0/iostream:39,
from etiquette_example_1.cpp:1:
/cumfs/soft. computecanada. ca/easybuild/software/2020/Core/gcccore/9.3.08/include/c++/9.3.8/ostream: 599:5: note: ‘std::endl’ declared here
599 | endl(basic ostream< CharT, Traits>& _ o0s)

| Pormama

Command Line / User Inputs

Yesterday, you would have learned how to navigate the command
line at Mark’s talk.

* [will assume you are familiar with the basics.

Suppose [wanted to check which two numbers, a and b, was smaller.
* Can I avoid having to recompile each time? Yes.

* Two solutions we will cover:
* Command line arguments
* User input during execution (cin).

* For command line arguments, modify the main function to include
two arguments (which we will talk about later):

main(){}
main(argc,

main(argc,

2024-05-13

Command line
(cont.)

The code on the right
will take two integers
as inputs.

[t then uses three
conditional _
statements to check if:

e a<b
e a>b

e ==

The pointer to the
array of argv[] needs
to be converted to the
appropriate type.

* atoi() for ints.

« atof() for doubles.

argv|[0] is the filename
of the executable.

2024-05-13

#include <iostream>
#include <stdlib.h>

using namespace std;
int main(int argc, char® argv[]){
if (argc 1= 3){

cout << "ERROR: Incorrect number of arguments given." << endl;
return 1;

(]

int a = atoi(argv[1]);
int b = atoi(argv[2]);

if (a < b) cout << "a < b" << endl;
else if (a > b) cout << "a > b" << endl;
else{
cout << "a = b" << endl;
.
H

return @;

27

#include <iostream>
using namespace std;

Character i1nputs [

int val = @;
e Another variation of this v| while (val > 10 || val < 1){
program IS Character lnput E?:t;(mi];.:eas:e enter a number between 1 and 10." << endl;
 Called cin; opposite of cout.

cout << "Thank you for entering " << wval;
cout k< ", which is in the correct bounds!” << endl;

* Like cout, it is apart of the
jostream header.

return @;

 This asks the user for input

during execution, Please enter a number between 1 and 10,
0
e The general structure is to Please enter a number between 1 and 10.

declare some variable of a given '

- t ber between 1 and 10.
type, then use the overloaded """ ™" @ P PR LA

cin OperatOI‘ to store it Please enter a number between 1 and 10.
—1

) Please enter a number between 1 and 10.
cin >> val_;l 1

int val = @;

Thank you for entering 1, which is in the correct bounds!

* Letus see this in action.

Exercise (basic 1ntro.)

* Take the next 5 minutes to do the following:
* Write a program that asks the user for two numbers.
 Stipulate that the one number must be greater than the other.

* Loop over the range that these two numbers span (incrementing by 1 at
each step).

« At each point, compute the product of the increment and upper bound
and output the information to the terminal to update the user.

* BONUS: Instead of printing the product, cout the division and the
remainder for the two numbers. For the remainder, you will need to use
the % operator.

2024-05-13

#include <iostream>

FunCtionS using namespace std;

v double add(double a, double b){
return a + b;

Thus far, we have made use of

functions from the standard library.)
* You are free to create your own. v double subtract(double a, double b){
. . . return a - b;
As is the case with our main, our \
custom functions will have the
following format: v double multiple(double a, double b){
type function_name(args){} } return a*b;
type: Denotes the type of value
returned by the function. v double f(double x){
.) return x*x - 13*x + 42;
function_name: The name you give to }
the function.
args: the arguments supplied to the NIRRT
function (types must be specified cout << add(1,2) << endl;
and separated by commas). cout << subtract(1,2) <« endl;

cout << multiple(1,2) << endl;

Lets talk about some of the examples cout << (2) << endl;

on the right.

return @;

2024-05-13

25

Question time!

* Will the following code give me an error during compilation? N O !

#include <iostream>
using namespace std;
double multiply(double x, double y){

return x*y;

int multiply(int x, int y){
return x*y;

¥
int main()H
int i product = multiply(2, 4);
double d product = multiply(2.1, 4.2);
cout << "Prodct using integar multiply function: " << 1 _product << endl;
cout << "Prodct using double multiply function: " << d product << endl;
21 |
return @;
ki

2024-05-13 26

#include <iostream>

Function
overloading

Function overloading is a
method of having the same

v double add(double a, double b){
return a + b;

function name but with ¥
different arguments.
ThlS is allowed, ifand Only v douple Eldd('_‘l:::h.'_“ e a, double h, Jouple C){
if, there arguments are return a + b + ¢;
different.)
* Compiler will look for
apﬁ)roprlate function v double add(double a, double b, double c, double d){
Ca . AR RS R S - » HAL LA » S i S
o _ return a + b + ¢ + d;
An unrealistic example is)
on the right.
* In practice, a sum v int main()f
function for array or
vector of length
would be used. cout << add(1,2) << endl;
20 cout << add(1,2,3) << endl;

See this in ROOT, Geant4,
etc. very often.

 TH1, Tfile, TTree,
TBranch. return 0;

cout << add(1,2,3,4) << endl;

2024-05-13

27

FunCtiOn #include <iostream>
prototyping space std;

* Something you will encounter Fohils Pl o
when working with classes is
function prototyping.

* A method of defining a

) . or (int 1 = -50; 1 < 50; 1++){

function and its arguments ST R S = 5@ e
prior to specifying its cout << ", f(x) = " << f(i) << endl;
operation. 12 1

e Useful for when functions eturn o

depend on one another. y
* Or for the sake of tidiness, a _ _

class is defined in a header delille sfrelile SN

" . .] &l ES £ -
file outside the current file. return x¥x + 37X + 5;

2024-05-13

28

Namespaces
pt. 2

* You can create your own
namespace.

* Suppose you have a set
of custom functions that
you use in your analysis.

* Can place these in a
header file and
include this in future

analysis to have access
to the functions.

* To define a namespace:

namespace nsp_namey{..code..}

* An example is on the
right.

2024-05-13

#1inc

lude <iostream>

race analysis{
const double energy = 2.614;
const double ratio = ©.99;
double f(double x){

return x¥*x;

(]

namespace sub _analysis{
cons tiedeuble-memantum = 2.14;

const double e2 = energy*energy;

double g(double x
return x*x*x;

(=]

main(){]

double a = 2.9;

double a2 = analysis::f(a);
double a3 = analysis::sub analysis::g(a);
std::cout << "A =" << a<< "™, ar2 ="

double e = analysis::energy;

double e2 = analysis::sub _analysis::e2;
std::cout << "Energy = " << e <<

return @;

<< a2 << "

", Energy squared = "

Main namespace
(analysis).

Nested namespace
(sub_analysis).

sub_analysis has
access to members
NEREWSEE

, A"3 = " << a3 << std::endl;

<< e2 << std::endl;

29

A brief aside on scope

* Let’s talk about scope.

* You might often hear programmers talk
about scope. What does this mean?

* Scope tells us where a function, variable,
struct, class, is or is not defined.

* We saw earlier namespaces, functions:

 The rule of thumb is that when a variable is
defined within one of these, it is local to this
scope.

* You cannot access it outside of this
namespace of function.

* Itis good practice to avoid global variables.

2024-05-13

Scope error

Let us take a
couple minutes
to find the scope
error.

e Where is the

2024-05-13

error?

FOUND IT!

If we try to
declare thatd is
equal to a, the
compiler will
recognize thata
is “not declared
in this scope”.

12

#include <iostream>

namespace top_namespace{

}

int b = 5;
double ¢ = b¥*2.0;

I
T
S &
]
I

.
>

.
I
int d = a3
H—LI:*LJ'TU’
ble g(double x){
return 2¥x;
.
I
int main(){

std::cout << "Just hanging out!"” << std::endl;

return @;

31

Exercise

* Take the next 10 minutes to do the following:

* Write a program that prompts the user for two numbers.
* The first will be a lower limit and the second will be an upper limit.
« Create a function, some kind of polynomial (i.e. f(x) = 2x? + 3x — 12).

* Use the function you have created, as well as a loop of your choice to
evaluate the function at every point across range.

* BONUS: Compute the average value of the function on this interval.:

 Remember that the average value of a function is obtained through the

mean value theorem.
1

G), FO =@

* Don’t bother numerically integrating the function, just use the factitis a
simple polynomial to find the anti-derivative.

2024-05-13

FTE-REOS TP- Py)JAF+.1Aq.u.>

#tinclude <vector>
int main(){

int size = 58;

AI’I‘ayS and VeCtorS int arr[size];

std::cout << arr[e] << std::endl;

Vectors and arrays serve a similar function.

But are vastly different in execution. :::E _ ;
 Both can store multiple instances of the '
same type (i.e. int, double, etc.). for (int i = @; i < size; ie+)]
Arrays are static entities (like structs). arr[i] = i;
« This means that they cannot change size b
after declaration.
(yzn9array;narne[kaeﬁ' std::cout << arr[@] << std::endl;
Vectors are dynamically sized entities. std: :vector<double> vec;
* They can change size after declaration
(although, be careful of memory vec.push_back(1);

constraints). vec.push_back(2);
std::vector<t¢ype>vector_name; vec.clear();

Each have their own respective functions.

« std::vector reference
(https://cplusplus.com /reference/vector/v _
ector{). vec.push back(j);

std::array reference

(https:/ en.creference.com /w/cpp/cont
ainer/array). std::cout << vec.at(®) << std::endl;
std::cout << vec[@] << std::endl;

for (int j = @; J < size; J++){

(]

return @,

2024-05-13 1

https://cplusplus.com/reference/vector/vector/
https://en.cppreference.com/w/cpp/container/array

#1nclude <1ostream>

using namespace std;
StruCtS v struct person{
string name = "Remington";
« string hair_colour = "Brown”;
Structures are aggregate data types”. string eye_colour = “Blue";
: : double height = "185";
 Another way of saying collection. |- - eiont — ons
What are some examples of 13 [
‘structures’ in real life? -
e Aperson. v int main(){
* Height, name, hair colour, etc. Pefion Remi?gtins N
. cou << Remlng on.name << en H
* A SNOLAB experlment. cout << Remington.hair_colour << endl;

- . cout << Remington.eye colour << endl;
Remlngtt}n IVItY' etc. cout << Remington.height << endl;
Brown cout << Remington.weight << endl;

Blue

185 uctis:

Remington.name = "Samwise the Brave";
Qg Remington.height = 100;
Remington.hair colour = "Dirty blonde™;

Samwise the Brave
Dirty blonde

Blue
108
a9

cout << Remington.name << endl;

cout << Remington.hair colour << endl;
cout << Remington.eye colour << endl;
cout << Remington.height << endl;
cout << Remington.weight << endl;

return @;

2024-05-13

Classes

Classes are a more complicated struct.
e Very similar construction.

They allow you to privatize or publicize variables and functions.

Like structs, classes have an optional requirement(s):

* Constructor: allows the user to specify what functions are called,
variables are set, etc. when the class object is first created.

* Destructor: allows the user to specify what happens to the class
variables at the end of the program.

« We won’t talk about this much here.

Let us consider an example:

* Suppose we wanted to create a class that represented each
experiment at SNOLAB.

 What sort of variables, functions, etc. would we need?

Let us do this together!

2024-05-13

Zork project! (30 minutes)

 Ever heard of Zork?

» Text-based adventure game; released back
in the 1970s and 80s.

* Design a program that includes the
following:
* Create a C++ class for the character.
* Include health, attributes, items.

* (Create a set of narrative conditions that asks
the user to choose what to do.

 Each narrative condition can be represented
by a function.

 Use control statements to change to
different functions.

* Make sure to ask for user input at each step.

* Inthe time that you have, try and have at
least three prompts; update you character if
they take damage, acquire an item, etc.

» [will be walking around and helping.
* Feel free to work in groups.

2024-05-13

Your greatest challenge

lies ahead-and downwards.
i 1

DIEEACIND FXTN

AN

SEAVSRD LAY

Conclusions

. '([:‘hroughout this talk we have established the basics of how to write in
++.

* We looked at the different data types in C++ and how to perform basic
numerical operations on them.

* We established some of the basics for defining your own functions, while
also talking about prototyping and overloading.

 Arrays and vectors were introduced to give you an introduction on where
each might be more appropriate or better to use.

* We discussed classes and structs that will allow you to interpret more
complex C++ code and organize your own analysis work.

. %{SO‘E(SQanly encourage you to all attend the talk by Philippe next week on

* Between now and then play around with C++ and see if you can begin to
write more complex scripts.

. R(_)(})I’I_‘ is a toolset used by many experiments; it will help to have experience
with 1t.

 If you ever have any questions or comments, feel free to stop by my
cubical or reach out via email: remington.hill@queensu.ca.

mailto:remington.hill@queensu.ca

Thank you for listening! Questions?

ueen’s

UNIVERSITY

2024-05-13

