
2024-05-13  1

The TUCAN EDM experiment
TRIUMF Ultracold Advanced Neutron Electric Dipole Moment

.
Wolfgang Klassen, UBC PhD candidate, for the TUCAN collaboration
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Why?

● The universe is dominated by matter

● Some early universe process must have produced this excess

● Sakharov conditions for this process:
● Baryon number violation
● C and CP symmetry violation
● Departure from thermal equilibrium
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Why?

● The universe is dominated by matter

● Some early universe process must have produced this excess

● Sakharov conditions for this process:
● Baryon number violation
● C and CP symmetry violation
● Departure from thermal equilibrium

The Standard Model does not 
currently have enough of this!
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CP vs T symmetry
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Why EDMs?

● The Hamiltonian for a particle with spin in an electromagnetic field is:

● If we reverse time (i.e. apply a T transformation)

● The Hamiltonian is not the same!
● T symmetry (and therefore CP symmetry) is violated in this system, 

but only if d is nonzero – a permanent EDM.
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Electric Dipole Moments
● Describes the distribution of charge in an object

Dipole moment Displacement 
of charge in 

object

Charge being displaced
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The Neutron Electric Dipole Moment
● Neutrons are overall electrically neutral
● Quarks have charge
● The nEDM describes the distribution of 

these charges
● The current best measurement performed 

by the PSI nEDM collaboration:

● Our goal is an order of magnitude 
improvement!
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Why neutrons?
● Sensitive to some BSM physics 

models
● Standard Model prediction is 

far far below experimental 
limits

● Essentially SM background-free
● Bare nucleon directly feels 

impact of applied fields
● No screening effects
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How do we measure an EDM?

● Observable property is precession frequency:

E & B parallel

E & B antiparallel
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How do we measure an EDM?

Subtracting the previous two equations:

Get this...
...by measuring this

while controlling this
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Basic idea

High Voltage

E

E

B

B
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The TUCAN EDM experiment
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The TUCAN EDM experiment

Neutron source
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Ultracold Neutrons
● Neutrons are notoriously difficult to hold on to

● Electrically neutral →can’t feel Coulomb 
force

● Solution:
● Make them cold
● UCN feel an effective “Fermi” potential when 

they encounter a physical material due to 
strong interactions with the nuclei in the 
material

Thermal neutron
En >> 300 neV

Ultracold neutron
En < 300 neV
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Ultracold Neutrons
● Spallation neutrons lose almost all their energy in liquid Helium

Figure: Kawasaki, Shinsuke & Okamura, Takahiro. (2020). Development of a Helium-3 Cryostat for a Ultra-Cold Neutron 
Source. IOP Conference Series: Materials Science and Engineering. 755. 012140. 10.1088/1757-899X/755/1/012140. 

● PSI measured on 
average 11400 
UCN per cycle

● TUCAN source is 
expected to 
produce enough to 
measure 1400000 
UCN per cycle
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Ultracold Neutrons
● UCN can be trapped and directed using physical guides

● Special coating on the guides raises the effective Fermi 
potential

● Left: a section of guide polished and coated with NiP
● Below: a facility at UWinnipeg for coating guides with 

diamond-like carbon
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Measuring νn

● Can’t look at neutrons
● No optical interrogation of precession

● What can we do to neutrons?
● Polarize them
● NMR-style spin manipulation
● Sort spin up from spin down
● Count them
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The TUCAN EDM experiment

Polarizing magnet
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● Each cycle the UCNs start out polarized with spins pointing along B0 
thanks to the polarizing magnet

● No precession since spins are aligned with field

B

Measuring νn
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Getting them to precess
● Applying RF at the correct frequency causes the spin of the 

neutron to tip
● Applying it for the correct duration stops the tilt at exactly π/2

Figure: Godfrin, Clément. (2017). Quantum information 
processing using a molecular magnet single nuclear spin qubit. 
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Measuring νn

● NMR-style π/2 pulse tips spins into horizontal plane
● Now UCNs precess at their Larmor frequency

B
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Precession chambers
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Measuring νn
● After some relatively long time (100s of seconds) another spin-tipping 

pulse is applied
● Key part: the second pulse is carefully chosen so that the resulting ratio of 

spin up/spin down is extremely sensitive to the accumulated phase of the 
neutrons

B
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Sorting spin up from spin down
● Magnetized 

iron foil only 
allows one 
spin state to 
pass through

Neutron 
detector

Neutron 
detector
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Spin analyzers
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Ramsey resonance
● Frequency is now determined by fitting neutron counts to the 

following theoretical curve:
● This technique is called 

“Ramsey interferometry” 
or “separated oscillating 
fields method” if you want 
to look up further details

Figure: Chesnevskaya, S.. (2015). Investigation of electric fields, losses and 
depolarization of ultra-cold neutrons for the new nEDM experiment at FRM II .
 10.13140/RG.2.2.21271.01444. 

Second π/2 Pulse
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How precise?

● B = 1 μT
● Neutron has a magnetic moment so precesses at ~30 Hz in this field

● E = 10 kV/cm
● If the EDM was just barely smaller than the current upper limit (best 

case scenario) it would precess at ~5 nHz



2024-05-13  28
W. Klassen

Magnetic fields

● We want to measure a parts-per-billion frequency shift due to the 
electric field polarity switch

● Other frequency shifts are potential systematic errors
● Changes in the magnetic field at the ppb level can cause shifts of 

the same order
● Need to measure B within 1 μT*1ppb = 1 fT = 1*10-15 T

As magnetic as your thoughts (literally)
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The TUCAN MSR

Our experiment

0.5 T cyclotron
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The TUCAN MSR

3.5 m

3.5 m

3.5 m
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Magnetic control
● Active magnetic compensation

● Bucks majority of cyclotron field, keeps MSR well 
below saturation

● 5 later μ-metal MSR
● Passively shields remaining meson hall field

● Self-shielded B0 coil
● Provides very uniform 1 μT field for experiment

● N-by-N square shim coils
● Buck remaining gradients in B0

● Hg comagnetometer
● Hg based optical magnetometry in the same volume as 

the neutrons track the field they experience

● Set of 20 Cs magnetometers
● Measures high order gradients in field
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Conclusion

● nEDM measurements have the potential to shed light on 
baryogenesis in the early universe

● TUCANs world-leading source of UCN will make our EDM 
measurement competitive with the current leaders in the field

● The unique constraints of this experiment has lead/will lead to the 
development of novel cryogenics and magnetics technologies
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Questions?
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