

# Why?

The universe is dominated by matter

Some early universe process must have produced this excess 

- Sakharov conditions for this process:
  - Baryon number violation
  - C and CP symmetry violation
  - Departure from thermal equilibrium



W. Klassen

# Why?

• The universe is dominated by matter

- Some early universe process must have produced this excess
- Sakharov conditions for this process:
  - Baryon number violation
  - C and CP symmetry violation

The Standard Model does not currently have enough of this!

• Departure from thermal equilibrium



# CP vs T symmetry





# Why EDMs?

• The Hamiltonian for a particle with spin in an electromagnetic field is:

$$H = \hbar\omega = -\mu \mathbf{B} \cdot \mathbf{S} - d\mathbf{E} \cdot \mathbf{S}$$

• If we reverse time (i.e. apply a T transformation)

$$\mathbf{T}(H) = \hbar\omega = -\mu\mathbf{B}\cdot\mathbf{S} + d\mathbf{E}\cdot\mathbf{S}$$

- The Hamiltonian is not the same!
  - T symmetry (and therefore CP symmetry) is violated in this system, but only if *d* is nonzero a permanent EDM.



## **Electric Dipole Moments**

• Describes the distribution of charge in an object





# **The Neutron Electric Dipole Moment**

- Neutrons are overall electrically neutral
- Quarks have charge
- The nEDM describes the distribution of these charges
- The current best measurement performed by the PSI nEDM collaboration:

$$|d_n| < 1.8 \times 10^{-26} e \cdot \text{cm} (90\% \text{ C.L.})$$

• Our goal is an order of magnitude improvement!

$$d = \Delta x \cdot q$$





# Why neutrons?



- Sensitive to some BSM physics models
- Standard Model prediction is far far below experimental limits
  - Essentially SM background-free
- Bare nucleon directly feels impact of applied fields
  - No screening effects



#### How do we measure an EDM?

• Observable property is precession frequency:





#### How do we measure an EDM?

#### Subtracting the previous two equations:

Get this...   
 
$$d_n = \frac{h(\nu_{\rm l} - \nu_{\rm l})}{4E}$$
 ...by measuring this while controlling this



### Basic idea





# The TUCAN EDM experiment





# The TUCAN EDM experiment







# **Ultracold Neutrons**

Neutrons are notoriously difficult to hold on to Thermal neutron Electrically neutral  $\rightarrow$  can't feel Coulomb E<sub>n</sub> >> 300 neV force Solution: Make them cold UCN feel an effective "Fermi" potential when they encounter a physical material due to strong interactions with the nuclei in the material Ultracold neutron

 $E_n < 300 \text{ neV}$ 



W. Klassen

### **Ultracold Neutrons**

• Spallation neutrons lose almost all their energy in liquid Helium





Figure: Kawasaki, Shinsuke & Okamura, Takahiro. (2020). *Development of a Helium-3 Cryostat for a Ultra-Cold Neutron Source*. IOP Conference Series: Materials Science and Engineering. 755. 012140. 10.1088/1757-899X/755/1/012140. W. Klassen

15



# **Ultracold Neutrons**

- UCN can be trapped and directed using physical guides
  - Special coating on the guides raises the effective Fermi potential
- Left: a section of guide polished and coated with NiP
- **Below**: a facility at UWinnipeg for coating guides with diamond-like carbon





# Measuring $\nu_n$

- Can't look at neutrons
  - No optical interrogation of precession
- What **can** we do to neutrons?
  - Polarize them
  - NMR-style spin manipulation
  - Sort spin up from spin down
  - Count them



# The TUCAN EDM experiment





# Measuring $\nu_n$

- Each cycle the UCNs start out polarized with spins pointing along B<sub>0</sub> thanks to the polarizing magnet
  - No precession since spins are aligned with field





## Getting them to precess

- Applying RF at the correct frequency causes the spin of the neutron to tip
- Applying it for the correct duration stops the tilt at exactly  $\pi/2$





Figure: Godfrin, Clément. (2017). *Quantum information processing using a molecular magnet single nuclear spin qubit.* 

### Measuring $v_n$

- NMR-style  $\pi/2$  pulse tips spins into horizontal plane
  - Now UCNs precess at their Larmor frequency





### **Precession chambers**





# Measuring $\nu_n$

- After some relatively long time (100s of seconds) another spin-tipping pulse is applied
- Key part: the second pulse is carefully chosen so that the resulting ratio of spin up/spin down is extremely sensitive to the accumulated phase of the neutrons





# Sorting spin up from spin down





2024-05-13

W. Klassen

# Spin analyzers





#### Ramsey resonance

• Frequency is now determined by fitting neutron counts to the following theoretical curve:



 This technique is called "Ramsey interferometry" or "separated oscillating fields method" if you want to look up further details

Second  $\pi/2$  Pulse Applied Frequency (Hz)



2024-05-13

W. Klassen

Figure: Chesnevskaya, S.. (2015). Investigation of electric fields, losses and depolarization of ultra-cold neutrons for the new nEDM experiment at FRM II. 10.13140/RG.2.2.21271.01444.

### How precise?

- **B** = 1 µT
  - Neutron has a magnetic moment so precesses at ~30 Hz in this field
- **E** = 10 kV/cm
  - If the EDM was just barely smaller than the current upper limit (best case scenario) it would precess at ~5 nHz

$$\frac{\mathrm{nHz}}{\mathrm{Hz}} = \mathrm{ppb}$$



# Magnetic fields

- We want to measure a parts-per-billion frequency shift due to the electric field polarity switch
- **Other** frequency shifts are potential systematic errors
- Changes in the magnetic field at the ppb level can cause shifts of the same order
- Need to measure B within  $1 \mu T*1ppb = 1 fT = 1*10^{-15} T$

As magnetic as your thoughts (literally)



### The TUCAN MSR







### The TUCAN MSR







# Magnetic control

- Active magnetic compensation
  - Bucks majority of cyclotron field, keeps MSR well below saturation
- 5 later µ-metal MSR
  - Passively shields remaining meson hall field
- Self-shielded B<sub>0</sub> coil
  - Provides very uniform 1 µT field for experiment
- N-by-N square shim coils
  - Buck remaining gradients in B<sub>0</sub>
- Hg comagnetometer
  - Hg based optical magnetometry in the same volume as the neutrons track the field they experience
- Set of 20 Cs magnetometers
  - Measures high order gradients in field





# Conclusion

 nEDM measurements have the potential to shed light on baryogenesis in the early universe

• TUCANs world-leading source of UCN will make our EDM measurement competitive with the current leaders in the field

• The unique constraints of this experiment has lead/will lead to the development of novel cryogenics and magnetics technologies





CANADA FOUNDATION FOR INNOVATION

FONDATION CANADIENNE POUR L'INNOVATION KEK

TUCAN TRIUME Ultracold Advanced Neutron Collaboration

**Stewart Blusson** Quantum Matter Institute



