

Hunting for Majorana neutrinos with nEXO

Thomas Brunner

McGill University and TRIUMF The summer particle (astro)physics workshop May 10, 2024 https://www.hep.physics.mcgill.ca/neutrino

My Career Path

Studied Physics at the Technical University Munich (2001 – 2011)

- Undergraduate research project
 - Programming of positron beam line in LabView
- Diploma thesis (MSc equivalent)
 - Investigation of positronium formation on cold surfaces
- PhD project, stationed at TRIUMF, Vancouver
 - In-trap decay spectroscopy with the TITAN EBIT
- Post doctoral research fellow at Stanford (2011 2015)
 - EXO-200, nEXO, and Ba-tagging
- Assistant professor at McGill (2015 2020)
 - EXO-200, nEXO, Ba-tagging, and in-trap decay spectroscopy

Associate professor at McGill (2020 – now)

- nEXO, Ba-tagging, and in-trap decay spectroscopy
- Parental leave for five months in 2021

(Condensed matter physics)

Atomic physics

Nuclear physics (decay spectroscopy and mass measurements)

Particle/neutrino/nuclear physics

2

I enjoy research because of the people

How to search for Majorana neutrinos?

Double Beta Decay

 $2\nu\beta\beta$ $T_{1/2} \approx 10^{20} \text{ y}$

Searching for $0\nu\beta\beta$ in ¹³⁶Xe with liquid Xe TPC **nEX**

¹³⁶Xe is great to study because:

- Good $0\nu\beta\beta$ peak location above most bgnds.
- Easy to enrich.
- We know how to build a detector out of it!

Natural radiation decay rates

A banana A bicycle tire 1 l outdoor air 100 kg of ¹³⁶Xe (2v) ~10 decays/s ~0.3 decays/s ~1 decay/min ~1 decay/10 min $T_{1/2}^{0v} > 10^{25}$ years !! \rightarrow Need:

high target mass
high exposure
low background rate
good energy resolution

nEXO's 0vββ search with a liquid Xe TPC

nEX®

Liquid-Xe Time Projection Chamber (TPC)

- Xe is used both as the source and detection medium.
- LXe is continuously recirculated and purified.
- LXe TPCs are well understood. As a fully homogeneous detector, it precisely measures backgrounds in situ.
 - → No internal materials (other than Xe), making nEXO uniquely robust against unknown backgrounds
- Multiparameter measurement from scintillation light and ionization signal:
 - 1. Energy from combined scintillation/ionization
 - 2. Topology, e.g., single-site or multi-site event
 - 3. Position distribution from 3D event reconstruction
 - 4. Particle identification from scintillation/ionization ratio

Searching for Ονββ in ¹³⁶Xe – a phased approach **nEX**

EXO-200 at WIPP (Decommissioned in Dec. 2018):

- EXO-200 first 100-kg class ββ experiment
- 175 kg liquid-Xe TPC with ~80% Xe-136
- Discovered $2\nu\beta\beta$ in Xe-136
- Demonstrated excellent background identification through multiplicity and location of events in TPC

https://www-project.slac.stanford.edu/exo/

nEXO:

- 5-tonne liquid Xe TPC
- Enriched in Xe-136 at ~90%
- SNOLAB cryopit preferred location by collaboration

https://nexo.llnl.gov/

Hunting for Majorana neutrinos with nEXO

Energy measurement (EXO-200 data)

Reconstructed energy, ²²⁸Th calibration:

Scintillation: 5.0% **ALPHA CUT** Ionization: 3.0% Scintillation energy [keV] Rotated: 1.2% ke< Counts/(10 keV) Ionization energy [keV] Energy [keV]

- Anticorrelation between scintillation and ionization in LXe known since early EXO R&D and now standard in LXe detectors [E.Conti et al. Phys Rev B 68 (2003) 054201]
- Rotation angle determined weekly using ²²⁸Th source data, defined as angle which gives best rotated resolution
- EXO-200 has achieved ~ 1.15% (PRL123,161802(2019)) energy resolution at the ββ decay Q value in Phase II

Scintillation vs. ionization, ²²⁸Th calibration:

Position and multiplicity (EXO-200 data)

Allows for background measurement and reduction

Events with > 1 charge cluster: multi-site events (MS) Events with 1 charge cluster: single-site events (SS)

Final EXO-200 Results

Slide from: M. Jewell September, 2019 TAUP2019, Toyama, Japan

EXO-200 0vββ results

- First 100 kg-class experiment to take data.
- Excellent background, very well predicted by the massive material characterization program (and the simulation) \rightarrow <u>This is essential for nEXO design</u>.
- More papers on non-ββ decay physics.

2012: Phys.Rev.Lett. 109 (2012) 032505 2014: Nature 510 (2014) 229-234 2018: Phys. Rev. Lett. 120, 072701 (2018) 2019: Phys. Rev. Lett. 123 (2019) 161802

Final result

Phase I+II: 234.1 kg yr of ¹³⁶Xe exposure Limit: $T_{1/2}^{0\nu\beta\beta} > 3.5x10^{25}$ yr (90% CL) $\langle m_{\beta\beta} \rangle <$ (93 -286) meV Sensitivity: 5.0x10²⁵ yr

May 10, 2024

Hunting for Majorana neutrinos with nEXO

EXO-200 decommissioning

nEXO at SNOLAB

15 m diameter

Picture: 10 x 10 cm² tile prototype JINST 13, P01006 (2018)

The nEXO detector

- 5 t liquid xenon TPC similar to EXO-200 (~30x the volume).
- SiPM for 175nm scintillation light detection, ~4.5m² SiPM array in LXe.
- Tiles for charge read out in LXe.
- Cold electronics inside TPC in liquid Xe.
- 3D event reconstruction.
- Combine charge and light readout. Goal $\rightarrow \sigma/E$ of <1% at Q-value.
- 1.5 ktonnes water-Cherenkov detector for muon tagging and shielding.

Anode Charge Readout

- Charge collection on tiled anode plane
- Full simulation of charge collection in nEXO used to optimize design
 - Crossed strips with no shielding grid
 - Channel pitch: 6mm
 - Tile size: 10 cm x 10 cm

Z. Li et al. (nEXO Collab) "Simulation of charge readout with segmented tiles in nEXO," JINST 14 P09020 (2019)

 Prototype tiles have been measured in LXe to validate simulation

M. Jewell et al. (nEXO Collab) "Characterization of an ionization readout tile for nEXO," JINST 13 P01006 (2018)

May 10, 2024

Hunting for Majorana neutrinos with nEXO

SiPMs for photon detection

- Advantages of SiPMs for photon detection
 - Low intrinsic radioactive backgrounds.
 - Improved energy resolution (SiPMs high gain).
 - Lower bias required for SiPMs (~50 V versus ~1.5 kV).
 - Devices from 2 vendors meeting requirements, demonstrated through R&D.

TPC

HFE 7000

SiPMs

Outer Cryostat

Vacuum

←130 cm→

Field Rings

LXe

High Voltage

nEXO Signal and Background

nEXO Signal and Background

nEXO Signal and Background

- Likelihood fit allows optimal weighting between signal and background combining energy, topology, and standoff over full 3D parameter space
- For clarity, we arrange the 3D bins into 1D, ordered by signal-to-background ratio.

nEX®

nEXO Projected Sensitivity

nEXO sensitivity reaches 10²⁸ yr in 6.5 yr data taking

Projected sensitivity based on background levels measured in samples of all detector materials!

Comparison with other experiments

Effective Majorana mass $\langle m_{\beta\beta} \rangle$ is an effective, albeit imperfect, metric to compare physics reach between isotopes and experiments.

	m_{etaeta} [meV], (median* NME)	
	90% excl. sens.	3σ discov. potential
ηEXO	8.2	11.1
EGEND	10.4	11.5
CUPID	12.9	15.0

*T_{1/2} values used [x10²⁸ yr]: nEXO: 1.35 (90% sens.), 0.74 (3σ discov.) [1] LEGEND: 1.6 (90% sens.), 1.3 (3σ discov.) [2] CUPID: 0.15 (90% sens.), 0.11 (3σ discov.) [3]

[1] nEXO collaboration, J. Phys. G: Nucl. Part. Phys. 49 015104 (2022), arXiv:2106.16243
[2] LEGEND pCDR, arXiv: 2107.11462
[3] CUPID pCDR, arXiv:1907.09376

nEX®

The international nEXO collaboration

~200 scientists, 34 institutions in 9 countries on 4 continents

nEX®

Collaboration Meeting in Montreal 2023

0vββ Discovery Potential

 $0\nu\beta\beta$ is the most practical way to test the Majorana nature of neutrinos. An observation of $0\nu\beta\beta$ always implies 'new' physics!

Summary

- nEXO is a discovery focussed 0vββ experiment.
- nEXO's multi-parameter signal extraction enables a "background-free" 0vββ search that is particularly robust against unknown backgrounds.
- nEXO is being designed to reach a sensitivity beyond ~10²⁸ years and will probe the entire inverted ordering parameter space.
- We are looking for students and postdocs to join our exciting search for 0vββ with nEXO!

