
GIT:
A BRIEF PRIMER

Stephen Sekula1,2

1SNOLAB, Lively, ON, Canada
2Queen’s University, Kingston, ON, Canada

May 10, 2024

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 1

https://www.queensu.ca/academia/ssekula
https://snolab.ca
https://www.queensu.ca/physics/

Outline

What is Git?

Git’ting Git

Git’ting Started

Git’ting Going

Git’ting More Advanced

Next Steps

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 2

What is Git?

Outline

What is Git?

Git’ting Git

Git’ting Started

Git’ting Going

Git’ting More Advanced

Next Steps

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 3

What is Git?

Git is a Revision Control System
I A Revision Control System (RCS) is any system that allows you to

manage versions of electronic files in a way that permits the
resolution of conflicting/complementary changes when more than
one contributor is active.

I There are many older systems than Git. I grew up on CVS
(Concurrent Versions System) and then («SHUDDER») Subversion.
Git is my favourite.

I It was developed in 2005 when Linus Torvalds, the creator and lead
maintainer of the LINUX operating system kernel, needed to replace
the Bitkeeper RCS, which had revoked its free license. Linus turned
over management of Git to Junio Hamano before its formal version
1.0 release. Like LINUX, Git is an open-source project.

I The documentation for Git claims Linus named it after himself (just
like LINUX), using the British slang word for an unpleasant person.
On its best day, documentation suggests Git stands for "Global
Information Tracker".

I Git’s strength is the ability to work locally on an entire copy of a
project, asynchronously with many other people, and still resolve
conflict.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 4

What is Git?

Git is a Revision Control System
I A Revision Control System (RCS) is any system that allows you to

manage versions of electronic files in a way that permits the
resolution of conflicting/complementary changes when more than
one contributor is active.

I There are many older systems than Git. I grew up on CVS
(Concurrent Versions System) and then («SHUDDER») Subversion.
Git is my favourite.

I It was developed in 2005 when Linus Torvalds, the creator and lead
maintainer of the LINUX operating system kernel, needed to replace
the Bitkeeper RCS, which had revoked its free license. Linus turned
over management of Git to Junio Hamano before its formal version
1.0 release. Like LINUX, Git is an open-source project.

I The documentation for Git claims Linus named it after himself (just
like LINUX), using the British slang word for an unpleasant person.
On its best day, documentation suggests Git stands for "Global
Information Tracker".

I Git’s strength is the ability to work locally on an entire copy of a
project, asynchronously with many other people, and still resolve
conflict.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 4

What is Git?

Git is a Revision Control System
I A Revision Control System (RCS) is any system that allows you to

manage versions of electronic files in a way that permits the
resolution of conflicting/complementary changes when more than
one contributor is active.

I There are many older systems than Git. I grew up on CVS
(Concurrent Versions System) and then («SHUDDER») Subversion.
Git is my favourite.

I It was developed in 2005 when Linus Torvalds, the creator and lead
maintainer of the LINUX operating system kernel, needed to replace
the Bitkeeper RCS, which had revoked its free license. Linus turned
over management of Git to Junio Hamano before its formal version
1.0 release. Like LINUX, Git is an open-source project.

I The documentation for Git claims Linus named it after himself (just
like LINUX), using the British slang word for an unpleasant person.
On its best day, documentation suggests Git stands for "Global
Information Tracker".

I Git’s strength is the ability to work locally on an entire copy of a
project, asynchronously with many other people, and still resolve
conflict.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 4

What is Git?

Git is a Revision Control System
I A Revision Control System (RCS) is any system that allows you to

manage versions of electronic files in a way that permits the
resolution of conflicting/complementary changes when more than
one contributor is active.

I There are many older systems than Git. I grew up on CVS
(Concurrent Versions System) and then («SHUDDER») Subversion.
Git is my favourite.

I It was developed in 2005 when Linus Torvalds, the creator and lead
maintainer of the LINUX operating system kernel, needed to replace
the Bitkeeper RCS, which had revoked its free license. Linus turned
over management of Git to Junio Hamano before its formal version
1.0 release. Like LINUX, Git is an open-source project.

I The documentation for Git claims Linus named it after himself (just
like LINUX), using the British slang word for an unpleasant person.
On its best day, documentation suggests Git stands for "Global
Information Tracker".

I Git’s strength is the ability to work locally on an entire copy of a
project, asynchronously with many other people, and still resolve
conflict.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 4

What is Git?

Git is a Revision Control System
I A Revision Control System (RCS) is any system that allows you to

manage versions of electronic files in a way that permits the
resolution of conflicting/complementary changes when more than
one contributor is active.

I There are many older systems than Git. I grew up on CVS
(Concurrent Versions System) and then («SHUDDER») Subversion.
Git is my favourite.

I It was developed in 2005 when Linus Torvalds, the creator and lead
maintainer of the LINUX operating system kernel, needed to replace
the Bitkeeper RCS, which had revoked its free license. Linus turned
over management of Git to Junio Hamano before its formal version
1.0 release. Like LINUX, Git is an open-source project.

I The documentation for Git claims Linus named it after himself (just
like LINUX), using the British slang word for an unpleasant person.
On its best day, documentation suggests Git stands for "Global
Information Tracker".

I Git’s strength is the ability to work locally on an entire copy of a
project, asynchronously with many other people, and still resolve
conflict.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 4

What is Git?

What is the idea of Git? (I)

I Let’s consider a simple example: co-authoring a
scientific or technical paper.

I Let’s say you have three collaborators — Amit,
Blaise, and Chris — working together to write up
scientific results.

I The work begins with Amit creating a file to hold the
paper and adding a first paragraph of text to the
paper. Let’s call this revision 1 of the document.

I Blaise and Chris then begin separately working on
revision 1 of the document to add their own content.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 5

What is Git?

What is the idea of Git? (I)

I Let’s consider a simple example: co-authoring a
scientific or technical paper.

I Let’s say you have three collaborators — Amit,
Blaise, and Chris — working together to write up
scientific results.

I The work begins with Amit creating a file to hold the
paper and adding a first paragraph of text to the
paper. Let’s call this revision 1 of the document.

I Blaise and Chris then begin separately working on
revision 1 of the document to add their own content.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 5

What is Git?

What is the idea of Git? (I)

I Let’s consider a simple example: co-authoring a
scientific or technical paper.

I Let’s say you have three collaborators — Amit,
Blaise, and Chris — working together to write up
scientific results.

I The work begins with Amit creating a file to hold the
paper and adding a first paragraph of text to the
paper. Let’s call this revision 1 of the document.

I Blaise and Chris then begin separately working on
revision 1 of the document to add their own content.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 5

What is Git?

What is the idea of Git? (I)

I Let’s consider a simple example: co-authoring a
scientific or technical paper.

I Let’s say you have three collaborators — Amit,
Blaise, and Chris — working together to write up
scientific results.

I The work begins with Amit creating a file to hold the
paper and adding a first paragraph of text to the
paper. Let’s call this revision 1 of the document.

I Blaise and Chris then begin separately working on
revision 1 of the document to add their own content.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 5

What is Git?

What is the idea of Git? (II)
Blaise adds a second
paragraph to the document
and generates a revision 2 of
the document.

Independent
of that, Chris adds their own
second paragraph.

All three now wish to bring
their contributions together
into a single version of the
document (revision 4). How
can they manage this without
a bunch of copy-and-paste in
a fourth copy of the
document? This is the
situation where Git excels.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 6

What is Git?

What is the idea of Git? (II)
Blaise adds a second
paragraph to the document
and generates a revision 2 of
the document. Independent
of that, Chris adds their own
second paragraph.

All three now wish to bring
their contributions together
into a single version of the
document (revision 4). How
can they manage this without
a bunch of copy-and-paste in
a fourth copy of the
document? This is the
situation where Git excels.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 6

What is Git?

What is the idea of Git? (II)
Blaise adds a second
paragraph to the document
and generates a revision 2 of
the document. Independent
of that, Chris adds their own
second paragraph.

All three now wish to bring
their contributions together
into a single version of the
document (revision 4). How
can they manage this without
a bunch of copy-and-paste in
a fourth copy of the
document? This is the
situation where Git excels.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 6

Git’ting Git

Outline

What is Git?

Git’ting Git

Git’ting Started

Git’ting Going

Git’ting More Advanced

Next Steps

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 7

Git’ting Git

How Do I Get Git? (Windows)

Download from gitforwindows.org

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 8

https://gitforwindows.org

Git’ting Git

How Do I Get Git? (Mac)

Install Mac’s Xcode package from the App Store

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 9

https://developer.apple.com/xcode/

Git’ting Git

How Do I Get Git? (Linux)

Install using your Linux distribution’s package manager

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 10

Git’ting Git

VSCode: Universal Open-Source Code Development Platform

Download and install from https://code.visualstudio.com/

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 11

https://code.visualstudio.com/

Git’ting Started

Outline

What is Git?

Git’ting Git

Git’ting Started

Git’ting Going

Git’ting More Advanced

Next Steps

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 12

Git’ting Started

Finding Help on the Command Line
The git command can be followed by a second command to execute a task. This includes asking for help: git
help. For example,
> git help

usage: git [--version] [--help] [-C <path>] [-c <name>=<value>]
[--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
[-p | --paginate | -P | --no-pager] [--no-replace-objects] [--bare]
[--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
[--super-prefix=<path>] [--config-env=<name>=<envvar>]
<command> [<args>]

These are common Git commands used in various situations:

start a working area (see also: git help tutorial)
clone Clone a repository into a new directory
init Create an empty Git repository or reinitialize an existing one

work on the current change (see also: git help everyday)
add Add file contents to the index
mv Move or rename a file, a directory, or a symlink
restore Restore working tree files
rm Remove files from the working tree and from the index

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 13

Git’ting Started

Getting a Repository for Practice
We want to begin by getting an existing project and cloning it our own computer. Let’s exercise getting help on
commands:

> git help clone

NAME
git-clone - Clone a repository into a new directory

SYNOPSIS
git clone [--template=<template_directory>]

[-l] [-s] [--no-hardlinks] [-q] [-n] [--bare] [--mirror]
[-o <name>] [-b <name>] [-u <upload-pack>] [--reference <repository>]
[--dissociate] [--separate-git-dir <git dir>]
[--depth <depth>] [--[no-]single-branch] [--no-tags]
[--recurse-submodules[=<pathspec>]] [--[no-]shallow-submodules]
[--[no-]remote-submodules] [--jobs <n>] [--sparse] [--[no-]reject-shallow]
[--filter=<filter>] [--] <repository>
[<directory>]

DESCRIPTION
Clones a repository into a newly created directory, creates remote-tracking branches for each branch in

the cloned repository (visible using git branch --remotes), and creates and checks out an initial branch that
is forked from the cloned repositorys currently active branch.

That’s a lot of information. Let’s boil it down to the bare minimum:

git clone <<PROJECT URL>>

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 14

Git’ting Started

Cloning a Specific Repository

git clone https://github.com/stephensekula/Git-Tutorial-EIEIOO.git

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 15

Git’ting Started

Repository Structure: What Am I Looking At Here?

> cd Git-Tutorial-EIEIOO/
> ls -l
total 8
-rw-r--r-- 1 ssekula ssekula 1071 May 7 12:10 LICENSE
-rw-r--r-- 1 ssekula ssekula 95 May 7 12:10 README.md

When you checkout a project, by default you see (and are working on) what is known as
the main branch of the project. In the main branch, we see two files: a LICENSE file and a
README.md file. The latter is meant to serve as the "user instructions" for any project and
is written in a simple text-based formatting language called Markdown (md), which web
browsers can interpret and format as nice documents.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 16

Git’ting Going

Outline

What is Git?

Git’ting Git

Git’ting Started

Git’ting Going

Git’ting More Advanced

Next Steps

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 17

Git’ting Going

Change A File

Let’s begin by changing one of the files.
I Open the README.md file in an editor (e.g. VSCode, TextEdit (Mac), Notepad

(Windows), Emacs (**NIX), VI (**NIX), gedit (GNOME Desktop on Linux), etc.).
I Add some text to the bottom of the file, e.g.

I Cool. Cool. Cool. What does this have to do with Git?

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 18

Git’ting Going

Change A File

Let’s begin by changing one of the files.
I Open the README.md file in an editor (e.g. VSCode, TextEdit (Mac), Notepad

(Windows), Emacs (**NIX), VI (**NIX), gedit (GNOME Desktop on Linux), etc.).
I Add some text to the bottom of the file, e.g.

I Cool. Cool. Cool. What does this have to do with Git?

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 18

Git’ting Going

Change A File

Let’s begin by changing one of the files.
I Open the README.md file in an editor (e.g. VSCode, TextEdit (Mac), Notepad

(Windows), Emacs (**NIX), VI (**NIX), gedit (GNOME Desktop on Linux), etc.).
I Add some text to the bottom of the file, e.g.

I Cool. Cool. Cool. What does this have to do with Git?

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 18

Git’ting Going

Check the Project Status

Git is already tracking changes to files known to the project (e.g., LICENSE and
README.md) the moment you save your changes to the file. You can see that Git is
aware of changes using the git status command:
> git status
On branch main
Your branch is up to date with ’origin/main’.

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 19

Git’ting Going

Add A File

Our recent file editing has resulted in changes that Git recognizes. However, those
changes are not automatically stored. We have to tell Git to add files that have been
changed and then to commit those changes to the project so we can manage them (e.g.,
back them out if we don’t like them).

To do this we use
git add <<FILENAME>>

For example,
git add README.md

BONUS: Run git status. What is different now that you have run git add?

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 20

Git’ting Going

Add A File

Our recent file editing has resulted in changes that Git recognizes. However, those
changes are not automatically stored. We have to tell Git to add files that have been
changed and then to commit those changes to the project so we can manage them (e.g.,
back them out if we don’t like them).

To do this we use
git add <<FILENAME>>

For example,
git add README.md

BONUS: Run git status. What is different now that you have run git add?

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 20

Git’ting Going

Commit A Change
Even though you have added the changed files, the changes themselves are not recorded in the
repository. To do this, you need to commit your changes. It is this step that forever emblazons what
you did in the history of the project . . . at least, in your local copy of the project.

Committing comes with two minimal actions: executing commit and recording a log file message
explaining what you did. I like to do this in one line:
> git commit -m "I added to the README.md file explaining my excellent prose."
[main de69555] I added to the README.md file explaining my excellent prose.
1 file changed, 2 insertions(+)

If you use the one-line approach, try to keep your message to 50 characters or less. If you need
more space, run git commit without the -m option and use the editor window that opens to write
(a) a short one-line (50 character) title and below that (b) a list of your changes.

Each commit is assigned a unique identifier (e.g., de695553ab207d2d644464e1cbe202d70c7d5a07
(long form) or de69555 (short form)). This is how you can select which commits (from someone
else) you want to apply to your copy of the project. (reflect on the Amit, Blaise, and Chris problem)

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 21

Git’ting Going

Commit A Change
Even though you have added the changed files, the changes themselves are not recorded in the
repository. To do this, you need to commit your changes. It is this step that forever emblazons what
you did in the history of the project . . . at least, in your local copy of the project.

Committing comes with two minimal actions: executing commit and recording a log file message
explaining what you did. I like to do this in one line:
> git commit -m "I added to the README.md file explaining my excellent prose."
[main de69555] I added to the README.md file explaining my excellent prose.
1 file changed, 2 insertions(+)

If you use the one-line approach, try to keep your message to 50 characters or less. If you need
more space, run git commit without the -m option and use the editor window that opens to write
(a) a short one-line (50 character) title and below that (b) a list of your changes.

Each commit is assigned a unique identifier (e.g., de695553ab207d2d644464e1cbe202d70c7d5a07
(long form) or de69555 (short form)). This is how you can select which commits (from someone
else) you want to apply to your copy of the project. (reflect on the Amit, Blaise, and Chris problem)

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 21

Git’ting Going

Commit A Change
Even though you have added the changed files, the changes themselves are not recorded in the
repository. To do this, you need to commit your changes. It is this step that forever emblazons what
you did in the history of the project . . . at least, in your local copy of the project.

Committing comes with two minimal actions: executing commit and recording a log file message
explaining what you did. I like to do this in one line:
> git commit -m "I added to the README.md file explaining my excellent prose."
[main de69555] I added to the README.md file explaining my excellent prose.
1 file changed, 2 insertions(+)

If you use the one-line approach, try to keep your message to 50 characters or less. If you need
more space, run git commit without the -m option and use the editor window that opens to write
(a) a short one-line (50 character) title and below that (b) a list of your changes.

Each commit is assigned a unique identifier (e.g., de695553ab207d2d644464e1cbe202d70c7d5a07
(long form) or de69555 (short form)). This is how you can select which commits (from someone
else) you want to apply to your copy of the project. (reflect on the Amit, Blaise, and Chris problem)

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 21

Git’ting Going

See Your Change

You can check the log associated with the project to see that your change has been
recorded.
> git log
commit de695553ab207d2d644464e1cbe202d70c7d5a07 (HEAD -> main)
Author: Stephen Jacob Sekula <stephen.sekula@snolab.ca>
Date: Thu May 9 14:04:11 2024 -0400

I added to the README.md file explaining my excellent prose.

commit 2790b4f75893c248862b52f6f2508baded11eeea (origin/main, origin/HEAD)
Author: Stephen Sekula <stephensekula@users.noreply.github.com>
Date: Wed May 1 14:39:01 2024 -0400

Initial commit

What is the HEAD? This refers to the current branch’s latest commit. We are in the main
branch, and this commit represents its HEAD.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 22

Git’ting Going

See Your Change

You can check the log associated with the project to see that your change has been
recorded.
> git log
commit de695553ab207d2d644464e1cbe202d70c7d5a07 (HEAD -> main)
Author: Stephen Jacob Sekula <stephen.sekula@snolab.ca>
Date: Thu May 9 14:04:11 2024 -0400

I added to the README.md file explaining my excellent prose.

commit 2790b4f75893c248862b52f6f2508baded11eeea (origin/main, origin/HEAD)
Author: Stephen Sekula <stephensekula@users.noreply.github.com>
Date: Wed May 1 14:39:01 2024 -0400

Initial commit

What is the HEAD? This refers to the current branch’s latest commit. We are in the main
branch, and this commit represents its HEAD.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 22

Git’ting Going

Push Your Change
But wait! It’s true that your local clone of this project knows about the new change, but what about all your
non-local (remote) collaborators? How do they pick up this change? You have to push your commits to the
original project. In this case, my project was stored on the site Github, so we need to push this back there.
This is known as pushing changes to the remote repository (the "remote"):
> git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 454 bytes | 454.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
To github.com:stephensekula/Git-Tutorial-EIEIOO.git

2790b4f..de69555 main -> main

Nota bene: unless you (a) have an account on the remote system and (b) are recognized as a developer
with permission to push changes, you cannot push to a remote. Pulling is generally freely available
(anyone can take); pushing is limited to the development team (few can give).

By default, git push assumes you want to push changes to the remote listed at the top of the
information provided by git remote -v. Try it and see what you learn.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 23

Git’ting Going

Push Your Change
But wait! It’s true that your local clone of this project knows about the new change, but what about all your
non-local (remote) collaborators? How do they pick up this change? You have to push your commits to the
original project. In this case, my project was stored on the site Github, so we need to push this back there.
This is known as pushing changes to the remote repository (the "remote"):
> git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 454 bytes | 454.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
To github.com:stephensekula/Git-Tutorial-EIEIOO.git

2790b4f..de69555 main -> main

Nota bene: unless you (a) have an account on the remote system and (b) are recognized as a developer
with permission to push changes, you cannot push to a remote. Pulling is generally freely available
(anyone can take); pushing is limited to the development team (few can give).

By default, git push assumes you want to push changes to the remote listed at the top of the
information provided by git remote -v. Try it and see what you learn.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 23

Git’ting Going

Push Your Change
But wait! It’s true that your local clone of this project knows about the new change, but what about all your
non-local (remote) collaborators? How do they pick up this change? You have to push your commits to the
original project. In this case, my project was stored on the site Github, so we need to push this back there.
This is known as pushing changes to the remote repository (the "remote"):
> git push
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 454 bytes | 454.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
To github.com:stephensekula/Git-Tutorial-EIEIOO.git

2790b4f..de69555 main -> main

Nota bene: unless you (a) have an account on the remote system and (b) are recognized as a developer
with permission to push changes, you cannot push to a remote. Pulling is generally freely available
(anyone can take); pushing is limited to the development team (few can give).

By default, git push assumes you want to push changes to the remote listed at the top of the
information provided by git remote -v. Try it and see what you learn.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 23

Git’ting Going

Pull Others Changes
Let’s say I go ahead and edit the READMD.md file one more time:

Git-Tutorial-EIEIOO
A playground for participants in EIEIOO and other workshop environments.

WOW! Look at this AMAZING text I added. I am such a wordsmith.

This third line is clearly superior. All other third lines are a lie.

I then add, commit, and push my changes. If someone else has pushed their changes in the meantime,
this happens:
> git add README.md
> git commit -m "A clearly best third line ever in a README.md file!"
[main 2373be4] A clearly best third line ever in a README.md file!

1 file changed, 2 insertions(+)
> git push
To github.com:stephensekula/Git-Tutorial-EIEIOO.git
! [rejected] main -> main (fetch first)
error: failed to push some refs to ’github.com:stephensekula/Git-Tutorial-EIEIOO.git’
hint: Updates were rejected because the remote contains work that you do
hint: not have locally. This is usually caused by another repository pushing
hint: to the same ref. You may want to first integrate the remote changes
hint: (e.g., ’git pull ...’) before pushing again.
hint: See the ’Note about fast-forwards’ in ’git push --help’ for details.

Best practice: before you try to push your changes, pull from the remote repository (early and often when
working on any branch) to keep up with changes. Then push your changes. This often avoids conflict.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 24

Git’ting Going

The Git Four-Step

The habit you want to build as you develop a project is to execute periodically the "Git
Four-Step":
I git pull

I git add «FILES»

I git commit «MESSAGE»

I git push

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 25

Git’ting Going

Resolve Conflicts I

In the previous example, we will encounter our first conflict in the development team. Two
of us have added a third line to the README.md file. If I run a pull command:
> git pull
Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
Automatic merge failed; fix conflicts and then commit the result.

CONFLICT! What has happened as a result of being in this state?

The file with the conflict (README.md) has been modified to contain all the options. You
now have to edit the file and resolve those conflicts, either manually (deleting some
things, keeping others) or using a tool built into your editor (VSCode provides this ability
through plugins).

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 26

Git’ting Going

Resolve Conflicts I

In the previous example, we will encounter our first conflict in the development team. Two
of us have added a third line to the README.md file. If I run a pull command:
> git pull
Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
Automatic merge failed; fix conflicts and then commit the result.

CONFLICT! What has happened as a result of being in this state?

The file with the conflict (README.md) has been modified to contain all the options. You
now have to edit the file and resolve those conflicts, either manually (deleting some
things, keeping others) or using a tool built into your editor (VSCode provides this ability
through plugins).

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 26

Git’ting Going

Resolve Conflicts I

In the previous example, we will encounter our first conflict in the development team. Two
of us have added a third line to the README.md file. If I run a pull command:
> git pull
Auto-merging README.md
CONFLICT (content): Merge conflict in README.md
Automatic merge failed; fix conflicts and then commit the result.

CONFLICT! What has happened as a result of being in this state?

The file with the conflict (README.md) has been modified to contain all the options. You
now have to edit the file and resolve those conflicts, either manually (deleting some
things, keeping others) or using a tool built into your editor (VSCode provides this ability
through plugins).

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 26

Git’ting Going

Resolve Conflicts II

RESOLVED!

I use VSCode’s interface as an example. We see highlighted above (left) the two
conflicting line choices. VSCode allows you to choose your change (current change), the
original one from the remote version of the main branch (incoming change), or to accept
both. I accepted both, and the resulting file is shown right. Now you can git add, git
commit, and then git push.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 27

Git’ting More Advanced

Outline

What is Git?

Git’ting Git

Git’ting Started

Git’ting Going

Git’ting More Advanced

Next Steps

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 28

Git’ting More Advanced

Visualizing a Project with Branches
What is a branch? It’s just a term for how the project contents can be developed in
multiple, parallel (and sometimes divergent) ways. There are tools to visualize a project
and all of its branches, like Git Graph for VSCode:

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 29

Git’ting More Advanced

Creating A Branch

You can list branches in a project:
> git branch -l

* main

This is boring! Let’s create a second branch beside the main one to keep developing our
awesome README.md file:
> git checkout -b develop/better-readme
Switched to a new branch ’develop/better-readme’

Normally, the checkout command is how you select other branches to work on.
Executed this way, the command (a) creates the branch with your chosen name and (b)
then checks it out for you to develop. You are now developing on this branch, and any
changes you make here do not affect the main branch.

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 30

Git’ting More Advanced

Merging Changes Into Your Branch
While you are working on your great branch, somebody else might be making changes to the main branch. In
many cases, you may wish to pull those changes into your branch. You can merge in these changes as
follows:

> git checkout main
> git pull
> git checkout develop/better-

readme
> git merge main

We see the graph change from
what it was before, as the
development branch (blue) now
contains the separate changes
made to the main branch (pink)
and the two come back together
again, even though they remain
independent paths in the project.
They are "harmonized".

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 31

Git’ting More Advanced

Merging Changes Into Your Branch
While you are working on your great branch, somebody else might be making changes to the main branch. In
many cases, you may wish to pull those changes into your branch. You can merge in these changes as
follows:

> git checkout main
> git pull
> git checkout develop/better-

readme
> git merge main

We see the graph change from
what it was before, as the
development branch (blue) now
contains the separate changes
made to the main branch (pink)
and the two come back together
again, even though they remain
independent paths in the project.
They are "harmonized".

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 31

Git’ting More Advanced

Cherry-Picking Merges Into Your Branch
You may not want to merge in every commit in
the main branch. If you just want one of them,
you can cherry pick that specific commit. You
need only know the long or short code for that
commit.

This ability is why people often
advocate for atomic commits — the smallest
possible self-consistent commit so that others
can cherry pick specific changes or features
and ignore others.

In the example at the right, I cherry-picked one
of three commits from the main branch and
brought it into the development branch:

> git cherry-pick 3c5b250
Auto-merging README.md
[develop/better-readme 1f42be3] How can space

have a colour?
Date: Fri May 10 08:22:08 2024 -0400
1 file changed, 1 insertion(+), 2 deletions(-)

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 32

Git’ting More Advanced

Cherry-Picking Merges Into Your Branch
You may not want to merge in every commit in
the main branch. If you just want one of them,
you can cherry pick that specific commit. You
need only know the long or short code for that
commit. This ability is why people often
advocate for atomic commits — the smallest
possible self-consistent commit so that others
can cherry pick specific changes or features
and ignore others.

In the example at the right, I cherry-picked one
of three commits from the main branch and
brought it into the development branch:

> git cherry-pick 3c5b250
Auto-merging README.md
[develop/better-readme 1f42be3] How can space

have a colour?
Date: Fri May 10 08:22:08 2024 -0400
1 file changed, 1 insertion(+), 2 deletions(-)

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 32

Git’ting More Advanced

Cherry-Picking Merges Into Your Branch
You may not want to merge in every commit in
the main branch. If you just want one of them,
you can cherry pick that specific commit. You
need only know the long or short code for that
commit. This ability is why people often
advocate for atomic commits — the smallest
possible self-consistent commit so that others
can cherry pick specific changes or features
and ignore others.

In the example at the right, I cherry-picked one
of three commits from the main branch and
brought it into the development branch:
> git cherry-pick 3c5b250
Auto-merging README.md
[develop/better-readme 1f42be3] How can space

have a colour?
Date: Fri May 10 08:22:08 2024 -0400
1 file changed, 1 insertion(+), 2 deletions(-)

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 32

Git’ting More Advanced

Merging Your Branch Into the Main Branch

This is basically the same as merging changes from main into your development branch
. . . just in reverse!
> git checkout main
> git merge develop/better-readme

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 33

Git’ting More Advanced

Tagging An Important Milestone

A tag is a string or number associated with a snapshot of the code at a particular state. It
could be associated with a moment in time along the development of a branch,

or it could
be associated with a selected series of commits that are cherry-picked into a dedicated
branch. "Windows 11" or "macOS 14 Sonoma" or "Ubuntu 22.04" are tags (of a kind) and
represent the state of a suite of software at some time.

You can tag your branch (or main) at a given state by executing
git tag <<STRING>>

For example
git tag v0.0.1

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 34

Git’ting More Advanced

Tagging An Important Milestone

A tag is a string or number associated with a snapshot of the code at a particular state. It
could be associated with a moment in time along the development of a branch, or it could
be associated with a selected series of commits that are cherry-picked into a dedicated
branch.

"Windows 11" or "macOS 14 Sonoma" or "Ubuntu 22.04" are tags (of a kind) and
represent the state of a suite of software at some time.

You can tag your branch (or main) at a given state by executing
git tag <<STRING>>

For example
git tag v0.0.1

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 34

Git’ting More Advanced

Tagging An Important Milestone

A tag is a string or number associated with a snapshot of the code at a particular state. It
could be associated with a moment in time along the development of a branch, or it could
be associated with a selected series of commits that are cherry-picked into a dedicated
branch. "Windows 11" or "macOS 14 Sonoma" or "Ubuntu 22.04" are tags (of a kind) and
represent the state of a suite of software at some time.

You can tag your branch (or main) at a given state by executing
git tag <<STRING>>

For example
git tag v0.0.1

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 34

Next Steps

Outline

What is Git?

Git’ting Git

Git’ting Started

Git’ting Going

Git’ting More Advanced

Next Steps

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 35

Next Steps

Review and Outlook

I We have learned a little bit about the history and purpose of Git as a revision control
system.

I We have seen ways to get Git installed on your system.
I We have learned about some of the basic commands (clone, add, commit, pull, push,

status) that are routinely used together to manage changes to a project.
I We have seen some steps toward advanced usage (branch, merge, cherry-pick).
I Your homework: the best learning occurs when you have a goal and a purpose for a

tool. How would you use Git to manage a project or process that is important to you?

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 36

Next Steps

Review and Outlook

I We have learned a little bit about the history and purpose of Git as a revision control
system.

I We have seen ways to get Git installed on your system.
I We have learned about some of the basic commands (clone, add, commit, pull, push,

status) that are routinely used together to manage changes to a project.
I We have seen some steps toward advanced usage (branch, merge, cherry-pick).
I Your homework: the best learning occurs when you have a goal and a purpose for a

tool. How would you use Git to manage a project or process that is important to you?

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 36

Next Steps

Review and Outlook

I We have learned a little bit about the history and purpose of Git as a revision control
system.

I We have seen ways to get Git installed on your system.
I We have learned about some of the basic commands (clone, add, commit, pull, push,

status) that are routinely used together to manage changes to a project.
I We have seen some steps toward advanced usage (branch, merge, cherry-pick).
I Your homework: the best learning occurs when you have a goal and a purpose for a

tool. How would you use Git to manage a project or process that is important to you?

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 36

Next Steps

Review and Outlook

I We have learned a little bit about the history and purpose of Git as a revision control
system.

I We have seen ways to get Git installed on your system.
I We have learned about some of the basic commands (clone, add, commit, pull, push,

status) that are routinely used together to manage changes to a project.
I We have seen some steps toward advanced usage (branch, merge, cherry-pick).
I Your homework: the best learning occurs when you have a goal and a purpose for a

tool. How would you use Git to manage a project or process that is important to you?

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 36

Next Steps

Review and Outlook

I We have learned a little bit about the history and purpose of Git as a revision control
system.

I We have seen ways to get Git installed on your system.
I We have learned about some of the basic commands (clone, add, commit, pull, push,

status) that are routinely used together to manage changes to a project.
I We have seen some steps toward advanced usage (branch, merge, cherry-pick).
I Your homework: the best learning occurs when you have a goal and a purpose for a

tool. How would you use Git to manage a project or process that is important to you?

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 36

References

References I

S. Sekula (SNOLAB and Queen’s University) EIEIOO 2024 — GIT TUTORIAL May 10, 2024 37

	What is Git?
	Git'ting Git
	Git'ting Started
	Git'ting Going
	Git'ting More Advanced
	Next Steps
	References

