The KDK+ Experiment: measurement of the β + branching ratio of potassium 40

Queen's University

Arnaud Lemaire* - 05/08/2024

*Supported by the McDonald Institute

Engineering student from Lyon, France

Visiting research student on KDK+ with **Philippe Di Stefano**

Contributions from:

Peter Skensved - Senior Scientist Emma Ellingwood - PhD Candidate Nicholas Swidinsky - MSc Candidate Arnaud Lemaire - Visiting student Romain Arsenne - Visiting student David Van Herpt - Engineering project student

KDK Group at Queen's University:

Prof. Philippe Di Stefano PhD. Matthew Stukel MSc. Lilianna Hariasz

Motivation I

Decays

 β^{-40} K \rightarrow 40 Ca $+ \beta^{-} + \bar{\nu_e}$, K₋ $\leq Q_{-} = 1.3$ MeV, $P_{-} = 0.9$ $\beta^{+} {}^{40}\text{K} \rightarrow {}^{40}\text{Ar} + \beta^{+} + \nu_{e}, \ K_{+} \leq Q_{+} - 2m_{e} = 483 \text{ keV},$ $P_+ = O(10^{-5})$ EC0/EC* See KDK

Previously: KDK https://physics.aps.org/articles/v16/131

Implications

Stephen Ellis Cox

Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, US

July 31, 2023 • Physics 16, 131

the oldest rocks on Earth and in the Solar System.

the rock.

With a half-life of 1.25 billion years, potassium-40 does not decay often, but its decays have a big impact. As a relatively common isotope (0.012% of all potassium) of a very common metal (2.4% by mass of Earth's crust), potassium-40 is one of the primary sources of radioactivity we encounter in daily life. Its decays are the primary

5

The Search for WIMPs Continues

Two mammoth underground detectors have delivered more stringent upper limits on how

40K, one of the most common radioisotope:

A typical 150-gram banana contains about half a gram of potassium, and has an activity of roughly 15 Bq (per 150 g of banana)

Total earth activity [10²⁴Bq]

40K	232Th	238U
30	11	11

Motivation II

Inconsistency

- $BR + /BR = (1.12 \pm 0.14) \times 10^{-5}$
- 1. KDK expt 2023 [1]: $BR0/BR* = 0.0095 \pm 0.0022 \pm 0.0010$ 2. Engelkemeir expt 1962 [2]: 3. Mougeot theory 2018 [3]: $BR0/BR + = 215.0 \pm 3.1$
- Assuming 1. is correct, and taking Kossert 2022's evaluation [4] for λ – and λ *, we find inconsistent values for λ +:
 - ► 1+2) λ + = (5.5 ± 0.7) × 10⁻⁶ /Ga
 - ► 1+3) λ + = (2.5 ± 0.6) × 10⁻⁶ /Ga

General concept to measure 40K B+ to within 10% **Triple coincidence experiment**

Emitted β + annihilates into two 511keV γ back to back

Gamma detector: 4 Nal crystals quadrants connected to PMTs

Beta detector: Liquid scintillator + dissolved potassium 40

Positron detector: Choice of Liquid Scintillator Requirements :

 Positron absorption length in matter is very short ✓ 40K dissolved in the detector: liquid scintillator ✓ Good counting efficiency in liquid scintillator Optimize source activity to reduce experiment duration ✓ Use of enriched potassium: natural abundance **1.2** · **10**⁻⁴ ✓ Dissolve a lot of 40K in the liquid Adapt the geometry to the gamma detector ✓ Multiple design of the vial coupled with PMTs Commercial Ultima Gold liquid scintillator \checkmark « safer » LSC: easier to manipulate, (DIPN solvent) ✓ High water uptake capacity and ionic strength ✓ Light yield and quenching factor.

Liquid scintillator cocktail

Goals:

- Dissolving a maximum amount of Potassium in the vial
- Make the cocktail with the best light yield ✓ Find the best potassium salt ✓ Find the right concentration/volume ratio

Protocol:

- Aqueous solution of different salt concentration
- Prepare the cocktail with increasing volume of solution until two phases appear
- 20mL glass vial to observe the cocktail

stassium salts
stassium salts

Potassium Salt	KCI	KOH	KI	K2CO3	KNO3	KF	KIO3
Solubility in water g · L ⁻¹	360	1100	1430	1120	357	485	47
K concentration g · L ⁻¹	188	766	336	632	138	326	9
Natural 40K concentration µg · mL ⁻¹	22,0	89,6	39,3	73,9	16,1	38,1	1,0
3% enriched 40K concentration mg·mL ⁻¹	5,6	23,0	10,1	19,0	4,1	9,8	0,3

Choice of salt depends on: ✓ Chemical compatibility with LSC and vial ✓ High solubility

- ✓ Supply with high purity
- ✓ Possible enrichment

Basic

Toxic

KCI loading in Liquid Scintillator: Ultima Gold, PerkinElmer

Table 3. Sample capacity of selected cocktails for various ionic strength buffers (sample capacities are for 10 mL cocktail at 20 °C).

Ionic Strength	Ultima Gold XR	Hionic-Fluor	Pico-Fluor Plus	Ultima Gold	Ultima Gold MV	Opti-F
0.5 M NaCl	9.0 mL	1.4 mL	3.0 mL	1.5 mL	1.25 mL	1.1 mL
0.75 M NaCl	6.5 mL	2.25 mL	2.75 mL	0.75 mL	0.75 mL	0.75 m
1.0 M NaCl	5.5 mL	8.5 mL	2.3 mL	0.5 mL	0.5 mL	0.5 mL

Source: PerkinElmer

Too much aqueous solution or KCI: cocktail separates in 2 phases and becomes cloudy when shaked

KCI loading in Liquid Scintillator: Ultima Gold, PerkinElmer

KCI loading in Liquid Scintillator: Ultima Gold, PerkinElmer							
Results:							
Cocktail in 20mL glass vial	Cocktail in 20mL glass vial Ultima Gold Ultima Gold LLT						
Quantity of dissolved K mmol	1	3					
Mass of dissolved K mg	39	117					
For natural potassium abundance							
Mass of 40K µg	4,6	13,8					
Atoms of 40K	7E+16	2,1E+17					
Activity of the source Bq	1,2	3,6					
B+ emitted in a month	32	96					
For 3% enrichment							
Mass of 3% enriched 40K µg	1170	3510					
Atoms of 40K	1,8E+19	5,4E+19					
Activity of the source Bq	317	951					
B+ emitted in a month	8,3E+03	2,49E+04					

- Bad resolution and small volume of liquid scintillator
- No photopeak on a γ source spectra
- Use the Compton scattering effect to determine the relative light yield between liquid scintillators

Energy calibration of the liquid scintillator Compton coincidence experiment - setup

3D printed sleeve for **PMT**

3D printed vial holder

Energy calibration of the liquid scintillator

Energy calibration of the liquid scintillator

Incident gamma scatters and deposits energy in the liquid scintillator

Scattered gamma detected on Nal crystal

Energy calibration of the liquid scintillator

Kinetic energy of the electron after scattering with incident γE_{γ} :

$$T_e = E_0 - E = E_0 - rac{E_0}{1 + lpha(1 - \cos heta)}$$
 500
 $lpha = rac{E_0}{m_e \, c^2}$ 400
Solution 100

- Compare light yield of different cocktail
- Compare light collection of different setup
- Energy calibration of beta detector

200

100

υ

60° - 90°, UltimaGold, 2 PMT Hamamatsu R6095 65Zn Source - 240ns Coincidence Window 400lsb LSC - 200lsb Nal - 1050V high voltage 15h LSC Energy Deposition Coincidence

Liquid scintillation study Campaign

- Liquid scintillator type: Ultima Gold, Ultima Gold LLT
- Potassium Salt: KCI, K2CO3, KI, KOH.
- Volume and concentration of the aqueous solution mixed with the LSC

Requirements:

- Liquid scintillator stable over time; experiment can be longer than a week.
- Maximum light yield.
- Potassium homogeneously dissolved in the vial.

Goal: Determining which cocktail should be used for KDK+ experiment:

Liquid scintillation study Campaign Quantitative results

LSC study campaign

	UG_pure
•	LLT_pure
•	LLT_3ml_1M
0	LLT_KI_6mI_0.5M
•	LLT_1ml_2M
•	LLT_2ml_1M
	UG_3ml_0M
	LLT_3ml_0M
	UG_2ml_0.5M
	UG_1ml_1M
	UG_0.5mL_2M
•	LLT_1mL_1M
•	LLT_0.5mL_2M
0	LLT_K2CO3_3mL_1M
0	LLT_K2CO3_3mL_1M_shaked
0	LLT_KCL_2mL_2M_shaked
•	LLT_3mL_1M_V2
0	LLT_4mL_1M
0	LLT_4ml_1M_shaked
0	LLT_K2CO3_1mL_3M
0	LLT_K2CO3_1mL_3M_shaked
Δ	UG_2mL_2M
Δ	UG_2mL_2M_shaked
•	LLT_NaCI_3mL_1M

Different kind a vial for liquid scintillation

Machined Teflon vial with borosilicate window 35mL

PE vial **25mL**

Borosilicate vial 20mL

Gamma detector - MTAS at Michigan State University

- MTAS: Modular Total Absorption Spectrometer, at Facility of Rare Isotope Beam (FRIB).
- Consists of 19 Nal(TI) hexagonal shaped detectors (53cm x 20cm) weighing in at ~54 kg each
- MTAS provides $\sim 4\pi$ coverage on tagging the 1460 keV gammas

Gamma detector: Nal(TI) annulus

Features:

- Dating from the 1970s
- 23cm deep
- 8.5cm inner diameter hole
- 4 big Quadrant of 8cm thickness to stop 511keV gammas
- Simulation by Lilianna gives a 35% Triplecoincidence efficiency

Work to be done:

- Check if the crystals are well preserved
- Determine the efficiency

Design of a 300mL liquid scintillator for our detector

Energy calibration of the liquid scintillator Data acquisition

CAEN Digitizer V1730

- 16 channels
- CoMPASS software
- Spectra and Coincidence in live
- Data written on CSV, binary or root files. Analysis carried out offline

With the help of Emma and Nick to set up the computer and the configuration

Gamma detector: Nal(TI) annulus

Annulus spectra with new amplified sockets

Annulus PMT - New socket - 4 crystals comparison

1300 positive high voltage

Annulus spectra with new amplified sockets

Annulus PMT - New socket - bottom crystal

137Cs source

Iron collimator

New socket

Annulus PMT - New socket - bottom crystal

1300 positive high voltage - 137Cs source

Annulus spectra with new amplified sockets on bottom PMT /Users/arnaudlemaire/ECL/Queens/Experiment/LS/annulus/2024/new_DAQ/study_waveform/ & DAQ/bottomPMT_bg/RAW/SDataR_bottomPMT_bg.CSV & geometry/bottomPMT_137Cs_coli_avant2/RAW/SDataR_bottomPMT_137Cs_coli_avant2.CSV & geometry/bottomPMT_137Cs_coli_milieu/RAW/SDataR_bottomPMT_137Cs_coli_milieu.CSV & geometry/bottomPMT 137Cs_coli_fond/RAW/SDataR_bottomPMT_137Cs_coli_fond.CSV & DAQ/bottomPMT_137Cs_nocoli/RAW/SDataR_bottomPMT_137Cs_nocoli.CSV

Triple coincidence efficiency

- Sodium very close chemically to potassium
 - 0,00524 ns ✓ Dissolve itself in the liquid scintillator the same way
- When a 1275 keV gamma is detected: 90.3% of the time, a beta particle is emitted and should be detected with two 511 keV back-to-back γ s
- Determine experimentally the efficiency

Annulus Efficiency - 2 crystals

Teflon Vessel for liquid scintillator

Liquid scintillator **Ultima Gold**

Teflon Vessel in the annulus

Liquid scintillator in teflon vessel –

Bottom crystal of the annulus

Teflon Vessel in the annulus - coincidence window

Teflon_vessel_65Zn_in_annulus_CFD /Volumes/KDK+_Arnaud/KDK+/teflon_vessel/annulus2/ & le_source_above/RAW/SDataR_le_source_above_coinSorted.csv & cfd_source_above/RAW/SDataR_cfd_source_above_coinSorted.csv

Teflon Vessel in the annulus - coincidence window

Teflon_vessel_65Zn_in_annulus /Volumes/KDK+_Arnaud/KDK+/teflon_vessel/annulus2/ & cfd_source_above/RAW/SDataR_cfd_source_above_coinSorted.csv

> red curve = 225910 events orange curve = 225910 events bins=200

Conclusion

Results:

Method to load potassium in the LSC Choose the optimum LSC cocktail loaded with 40K ✓ Make the socket for Nal annulus and determine time resolution

Next steps:

 \checkmark Run test with 22Na for detector efficiency ✓ Do experiment with 40K at natural abundance in 300mL Teflon vessel

Working Compton coincidence to calibrate energy and resolution of LSC

Annexe

Energy calibration of the liquid scintillator 2nd setup, less plastic

Reflective foil to improve light collection by the PMT

Energy calibration of the liquid scintillator 2nd setup, less plastic

Reflective foil to improve light collection by the PMT

Energy calibration of the liquid scintillator Platform

Sodium Iodide module: 2" deep x 2" dia. crystals with SiPM

Slots for Nal module For every 10° from 0 to 140° at 20cm

Energy calibration of the liquid scintillator Vial holder for plastic vial with PMT on each side

Teflon Vessel test

Liquid scintillation study Campaign Quantitative results: Fitting the Compton peak

Main_name

Liquid scintillation study Campaign **Quantitative results: UG vs LLT**

exp_peak_764keV, exp_peak_582keV by Main_name

- Ultima Gold LLT has a better relative light yield
- Ultima Gold LLT diluted with water lose some light yield but less than UG does

Teflon Vessel in the annulus - Gamma Compton coincidences

LSC_Energy_Deposition_Coincidence /Volumes/KDK+_Arnaud/KDK+/teflon_vessel/annulus2/

Teflon Vessel in the annulus - Gamma Compton coincidences

CoincidenceTime_Nal_annulus_Teflon_vessel_65Zn_above_triggering_parameter /Volumes/KDK+_Arnaud/KDK+/teflon_vessel/annulus2/ & le_source_above/RAW/SDataR_le_source_above_coinSorted.csv & cfd_source_above/RAW/SDataR_cfd_source_above_coinSorted.csv & cfd_source_above_param_100p_200ns/RAW/SDataR_cfd_source_above_param_100p_200ns_coinSorted.csv & cfd_source_above_param_100p_300ns/RAW/SDataR_cfd_source_above_param_100p_300ns_coinSorted.csv & cfd_source_above_param_100p_300ns/RAW/SDataR_cfd_source_above_param_100p_300ns_coinSorted.csv & cfd_source_above_param_100p_300ns/RAW/SDataR_cfd_source_above_param_100p_300ns_coinSorted.csv

> darkblue curve = 288864 events darkred curve = 225910 events darkgreen curve = 268306 events darkmagenta curve = 276036 events saddlebrown curve = 234093 events bins=200

--. fit: m= -90 fwhm= 31 $--\cdot$ fit: m= -355 fwhm= 16 -- fit: m= -427 fwhm= 33 --- fit: m= -496 fwhm= 26 -- fit: m= -372 fwhm= 20 Leading_Edge_total CFD_50p_200ns_total CFD_100p_200ns_total CFD_100p_300ns_total CFD_75p_200ns_total -100n

Teflon Vessel in the annulus - Gamma Compton coincidences

Nal_spectra_annulus_coincidence_Teflon_vessel_65Zn_above_triggering_parameter /Volumes/KDK+_Arnaud/KDK+/teflon_vessel/annulus2/ & le_source_above/RAW/SDataR_le_source_above_coinSorted.csv & cfd_source_above/RAW/SDataR_cfd_source_above_coinSorted.csv & cfd_source_above_param_100p_200ns/RAW/SDataR_cfd_source_above_param_100p_200ns_coinSorted.csv & cfd_source_above_param_100p_300ns/RAW/SDataR_cfd_source_above_param_100p_300ns_coinSorted.csv & cfd_source_above_param_100p_300ns/RAW/SDataR_cfd_source_above_param_100p_300ns_coinSorted.csv & cfd_source_above_param_100p_300ns/RAW/SDataR_cfd_source_above_param_100p_300ns_coinSorted.csv

Teflon Vessel design

6	16	P05	Nylon threaded rod - Ihread	Nylon
7	2	P04	Support disc -	Aluminum 6061
8	1	McMaster - 94701A058	Filling hole's PTFE Plastic Screw - Ex Thread M3 x 0.5mm	PTFE Plastic
9	1	P06	Custom-made filling hole's gasket, thicknes	Viton
10	2	McMaster - 9262K715	Oil-Resistant Buna-N O-Ri	Buna-N Rubber
11	40	McMaster - 93800A116	Nylon Hex Nut, Th	Nylon 6/6 Plastic
12	2	McMaster - 1295N274	Chemical-Resistant Viton® Fluoroelc Wide, 7	Viton® Fluoroelastomer Rubber
8 7 6		6	5	

	McMaster - 8582K25 or similar		RELEASED FO	R INFORMATION		Arthur I	KDK+ B. McDonal a	d Institu	ute
	Essentra components - 38M030050TR or similar		UNLESS OTHE DIMENSION	RWISE SPECIFIED NS ARE IN mm		Queen's l	University, Physic.	s Departi	ment
	McMaster - 89015K239 or similar		DECIMALS X ± 0.5 X.X ± 0.1 X.XX ± 0.02	ANGLE ± 1° WELDMENTS ± 2	Ves	sel & I	PMs asse	emb	led
	McMaster - 86075K21 or similar		ROUNDS AN SURFACI	ND FILLETS 0.5 mm E FINISH 3.2 µm	Part Nur	mber: A01-	-KDK+		
			NAME DRW. A. Mir	DATE (YYYY-MM-DD) 2024-02-02	A01-). -A-KDK+-	1	QTY. 1	REV.
r			CHK. - SUB	-	WEIGHT:	838.2 g	MATERIAL: -	CUEET .	
	4	3	ΙΑΥΥΚ.Ι-	2	1 SHEELS	IZE: AINSI B	SCALE: 1:5	2HEEI	I OF I

	RAW MATERIAL
	McMaster - 8546K23 or similar
	McMaster - 4615T14 or similar
	McMaster - 8582K25 or similar
	Essentra components - 38M030050TR or similar
	McMaster - 89015K239 or similar
	McMaster - 86075K21 or similar
r	