

Superallowed Fermi β Decay

The low-energy precision frontier of nuclear physics

Dr. Gwen Grinyer she/her

Department of Physics, University of Regina, Regina, SK S4S 0A2, Canada

Gwen.Grinyer@uregina.ca

Gwen Grinyer, EIEIOO, 9 May 2024

Hi! I'm Gwen!

- My academic journey:
 - B.Sc. McMaster University (2002)
 - M.Sc. University of Guelph (2004)
 - Ph.D. University of Guelph (2008)
 - PDF Michigan State (2008-2010)
 - Staff scientist CEA (2010-2017)
 - Professor U Regina (since 2017)
- My lived experience:
 - Experimental nuclear physicist
 - First generation academic
 - Mom of 3 kids (ages 8, 15, 17)
 - Woman and LGBT in physics
- Passionate about EDI in STEM

UNIVERSITY OF REGINA Photo by Evie Johnny Ruddy

Nuclear β decay

• A neutron turns into a proton (or vice versa)

$$\begin{split} \mathbf{\beta}^{-} & \stackrel{A}{Z} X_{N} \rightarrow \stackrel{A}{Z+1} Y_{N-1} + e^{-} + \overline{\nu_{e}}, \\ & \text{neutron} \longrightarrow \text{proton} \\ \mathbf{\beta}^{+} & \stackrel{A}{Z} X_{N} \rightarrow \stackrel{A}{Z-1} W_{N+1} + e^{+} + \nu_{e}. \\ & \text{proton} \longrightarrow \text{neutron} \end{split}$$

Momentum conservation & selection rules:

$$\overrightarrow{J}_{P} = \overrightarrow{J}_{D} + \overrightarrow{L} + \overrightarrow{S}$$
 $\pi_{P} = \pi_{D}(-1)^{L}$

- Allowed decays (L=0)
- Forbidden decays (L=1,2,3,...)
- Fermi decays (S=0)
- Gamow-Teller decays (S=1)

B.Singh et al. Nucl. Data Sheets 84, 487 (1998)

Case	J ^π (P→D)	Classification	T _{1/2}	Fraction
¹⁸ N→ ¹⁸ C	1-→1-	Allowed (GT&F)	624 ms	C 1 0/
6He→6Li	0⁺→1⁺	Allowed (GT only)	807 ms	64% "Superallowed"
¹⁰ C→ ¹⁰ B	0⁺ →0⁺	Allowed (F only)	19 s	1%
³⁸ Cl→ ³⁸ Ar	2⁻→2⁺	1 st Forbidden	37 min	33%
³⁶ Cl→ ³⁶ Ar	2⁺ →0⁺	2 nd Forbidden	3 × 10 ⁵ years	1%
⁴⁰ K→ ⁴⁰ Ca	4- →0+	3 rd Forbidden	1×10^9 years	0.1%
⁵⁰ V→ ⁵⁰ Cr	6⁺→2⁺	4 th Forbidden	1 × 10 ¹⁷ years	0.1%

• The *ft* value is a convenient way to characterize nuclear β decay

$$\begin{array}{c} \text{Half-life} \\ \text{Q-value} \longrightarrow fT_{1/2} \\ ft = \frac{fT_{1/2}}{BR} = \frac{K}{g^2|M_{fi}|^2} \xleftarrow{} \text{Constants} \\ \\ \text{Branching} \qquad \longrightarrow BR \qquad \text{Strength} \end{array}$$

4 Superallowed Fermi Decay

Nuclear Isotopic Spin (Isospin)

- Introduced by Heisenberg in 1932
 - Protons and neutrons (iso)spin projections of the "nucleon"

•
$$t_z(p) = -\frac{1}{2}$$
 • $t_z(n) = +\frac{1}{2}$

Total isospin (T) and isospin projection T_z of the nucleus

$$T_z = \frac{1}{2}(N - Z) \quad \mathbf{T} = |T_z|, |T_z| + 1, \cdots, \frac{N + Z}{2}$$

- Nuclear β decay is a neutron changing into a proton (or vice versa)
 - Fermi decay between "isobaric analogue states" is a ladder operator

$$|M_F|^2 = (T \mp T_z)(T \pm T_z + 1)$$

For T = 1 decays $\longrightarrow |M_F|^2 = 2$ (to extent that isospin valid)

Conserved Vector Current Hypothesis (CVC)

• The ft values for superallowed Fermi decays... should be constant!

$$ft = \frac{fT_{1/2}}{BR} = \frac{K}{2G_V^2} = \text{constant }?$$

- CVC hypothesis (based on analogy to electrodynamics)
 - A universal coupling constant the electric charge "e"

• The weak interaction is also thought to have a universal coupling constant!

$$G_V = 1.13621 \times 10^{-5} \text{ GeV}^{-2}$$

R.P.Feynman and M.Gell-Man PR 109, 193 (1958)

Superallowed ft values

J.C.Hardy and I.S. Towner PRC 102, 045501 (2020)

- World survey of superallowed decays
 - > 220 independent measurements
- Superallowed ft values
 - Range from 3040 s to 3100 s (2%)
 - Higher-order effects (theory)

8 Superallowed Fermi Decay

Gwen Grinyer, EIEIOO, 9 May 2024

Superallowed ft values

J.C.Hardy and I.S. Towner PRC 102, 045501 (2020)

- World survey of superallowed decays
 - > 220 independent measurements
- Superallowed *ft* values
 - Range from 3040 s to 3100 s (2%)
 - Higher-order effects (theory)
- Isospin symmetry is not exact
 - Broken by charge dependent forces

 $|M_F|^2 = 2(1 - \delta_C)$

Superallowed ft values

J.C.Hardy and I.S. Towner PRC 102, 045501 (2020)

- World survey of superallowed decays
 - > 220 independent measurements
- Superallowed *ft* values
 - Range from 3040 s to 3100 s (2%)
 - Higher-order effects (theory)
- Isospin symmetry is not exact
 - Broken by charge dependent forces

 $|M_F|^2 = 2(1 - \delta_C)$

- Corrected Ft values
 - Constant at the level of 9×10⁻⁵
 - Validation of the CVC hypothesis
 - Strong constraint on "new physics"

Wilkinson's Methods

Dhruval Shah (University of Regina)

- Alternative method to extract Ft_{avg}
 - Constraint for theoretical δ_c models
- Since ISB is charge dependent
 - Remove Coulomb part of the correction
 - Perform a simple quadratic fit
 - Then extrapolate the data to Z = 0
- This works remarkably well!

$Ft_{avg} = 3071.6 \pm 1.6 s$	D. Shah (UofR)
Ft _{avg} = 3072.2 ± 1.9 s	Hardy and Towner (2020

- Almost no change in 15 years!
 - Wilkinson analysis performed in 2010

 $Ft_{avg} = 3071.5 \pm 1.4 s$ Grinyer *et al.* (2010)

Z of Daughter

Cabibbo-Kobayashi-Maskawa (CKM) Matrix

- The CKM matrix plays a central role in the Standard Model
 - It describes all quark flavour changing interactions (including β decay)
 - Given that there are 3 quark generations, CKM is a 3x3 matrix

• In the Standard Model the CKM matrix describes a *unitary* transformation

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

11 Superallowed Fermi Decay

- The most precise test of CKM unitarity comes from the *top row*
 - V_{ud} is by far the largest and is obtained precisely from superallowed decays

TRIUMF's ISAC Facility

- Canada's National Laboratory for Nuclear and Particle Physics
 - Isotope Separator and Accelerator (ISAC)

High-Precision Half-Life Measurements

- We use a gas proportional counter and a fast tape transport system
 - Implant radioactive isotopes from ISAC onto a tape (collection period)
 - Rapidly move the sample into a gas counter (beta particles ionize the gas)
 - Record the radioactive decay of the sample (exponential decay law)

Half-life of ¹⁰C

- Beam of radioactive ¹⁰C
 - Intensity ~10⁵ ions/s
- Data from 1 cycle (~ 8 mins)
 - Precision ± 0.07%
- Total of 550 cycles (4 days)
 - T_{1/2} = 19.3009(17) s

 $A(t) = A_0 e^{-\lambda t} + B$

Half-life of ¹⁰C

- Beam of radioactive ¹⁰C
 - Intensity ~10⁵ ions/s
- Data from 1 cycle (~ 8 mins)
 - Precision ± 0.07%
- Total of 550 cycles (4 days)
 - $T_{1/2} = 19.3009(17) s$
- Systematic uncertainties
 - The most important part!
- Half-life of ¹⁰C @ TRIUMF
 - Overall precision ± 0.009%
 - Most precise T_{1/2} ever reported!

Half-life of ¹⁴O

- Beam of radioactive ¹⁴O
 - Intensity ~10⁵ ions/s
- Data from 1 cycle (~ 25 mins)
 - Precision ± 0.10%
- Total of 124 cycles (3 days)
 - T_{1/2} = 70.6192(76) s

S.Sharma et al. E. Phys. J. A 58, 83 (2022)

Gwen Grinyer, EIEIOO, 9 May 2024

Half-life of ¹⁴O

- Beam of radioactive ¹⁴O
 - Intensity ~10⁵ ions/s
- Data from 1 cycle (~ 25 mins)
 - Precision ± 0.10%
- Total of 124 cycles (3 days)
 - $T_{1/2} = 70.6192(76) s$
- Half-life of ¹⁴O @ TRIUMF
 - Overall precision ± 0.010%
 - Comparable precision to ¹⁰C!
- Article published in 2022!
 - Shivani Sharma, U of R
 - Now at Sunnybrook Hospital

Next generation: GRIFFIN

%TRIUMF

- New HPGe γ-ray spectrometer
 - 16 large volume "clover" detectors
 - Fully operational since 2015
- Experiment S1140: Half-life of ¹⁴O
 - Statistical precision ± 0.03%
- Regina students lead the analysis!
 - Ugrad Dhruval Shah
 - M.Sc. Nastaran Saei
 - M.Sc. Jizhong Liu
 - Ph.D. Eric Gyabeng Fuakye
- Experiment S1848: BR of ³⁴Ar
 - New experiment at ISAC!
 - Performed in June/July 2023
 - M.Sc. Mira Rupert

My newest adventure!

- Large Enriched Germanium Experiment for Neutrinoless Double β decay
 - Deep underground ton-scale detector

 $2\nu\beta\beta \quad ^{76}\text{Ge} \quad \rightarrow \quad ^{76}\text{Se} + 2e^{-} + 2\overline{\nu_e}$ $0\nu\beta\beta \quad ^{76}\text{Ge} \quad \rightarrow \quad ^{76}\text{Se} + 2e^{-} + 0\overline{\nu_e}$

- Physics program
 - Search for Ονββ decay in ⁷⁶Ge
 - Are neutrinos their own antiparticle?
 - Baryon asymmetry (matter/antimatter)
 - Lepton number violation (beyond SM)
- Legend 1000 baseline design
 - To probe Ονββ with 99.7% discovery CL
 - For a ⁷⁶Ge half-life > 10²⁸ years
 - Background : 1 count per FWHM ton year!
 - Considering SNOLAB as a possible site

LEGEND PCDR arXiv: 2107.11462 (2021)

Queen's, Regina, SFU, SNOLAB

Thank you so much!

- Superallowed Fermi β Decay
 - The low-energy precision frontier
 - Constrain the Standard Model
 - Demanding test of CKM unitarity
- Experiments at TRIUMF-ISAC
 - The best place for these studies
 - World-leading detectors/expertise
- Many other projects in my group!
 - Looking for students (Fall 2025)
- Please contact me if interested!!

Gwen.Grinyer@uregina.ca

@gwendoesscience

