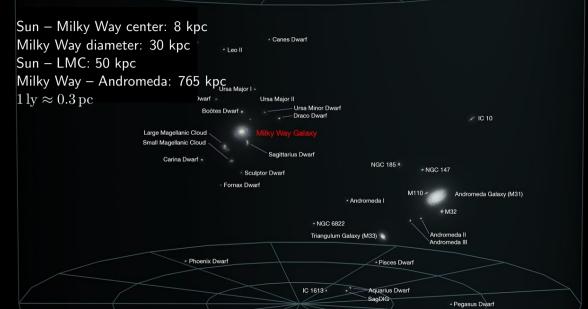
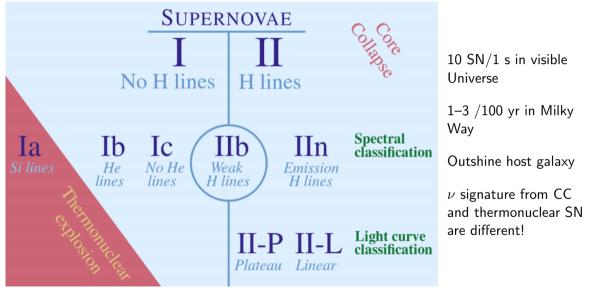
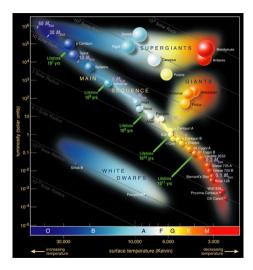
Introduction to Supernovae Janet Rumleskie 2021 summEr partIcIE (astro)physIcs wOrkshOp


NEUTOON OT O ULUOTO LTION

Why should we care about exploding stars (supernovae)?


- Where do we come from? Solar system + heavy elements created by a supernova (SN)
- Open questions:
 - How does the SN explode? For what kinds of stars? Which ones make neutron stars? Black holes? ...and many more
 - Do sterile neutrinos exist? What is the neutrino's magnetic moment? What neutrino oscillations are possible? ...and many more
- Neutrinos (ν) can answer many of these questions! Can also be used as alerts for other detectors searching for supernovae

Astronomical distances in the Local Group

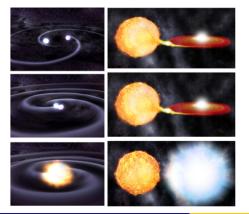


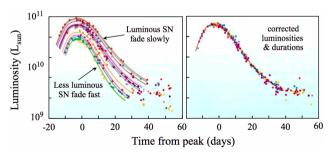
Supernova Classification

Crash course in stellar evolution

- Dust in the interstellar medium clumps under gravity
- Eventually forms a proto-star, commences hydrogen burning
- Becomes a Zero Age Main Sequence (ZAMS) star once hydrogen fusion supports it against gravity
- Once hydrogen burning in the core stops, things get interesting
- Stars with mass $M_{\rm ZAMS} < 8 \, {\rm M}_{\odot}$ eventually swell to become a giant, shed outer layers, then become white dwarves. White dwarves are the source of Type Ia SN!
- Stars with mass $M_{\rm ZAMS} \ge 8 \, {\rm M}_{\odot}$ swell to supergiants, eventually undergo a core collapse SN!
- Some uncertainty for stars $M_{\rm ZAMS} \geq 60\,{\rm M}_{\odot}$

Nuclear fusion inside a star

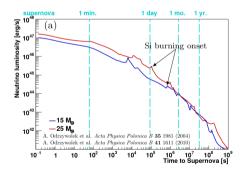

C. Giunti and C. W. Kim Fundamentals of Neutrino Physics and Astrophysics

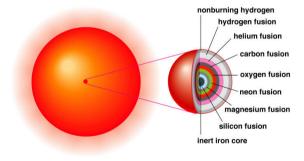

Reaction	T_c [K]	$ ho_c~[{ m g~cm^{-3}}]$	Δt [yr]	Termination point
$H \rightarrow {}^{4}He$	$3.53 imes 10^7$	5.81	1.11×10^7	
$^4\mathrm{He} ightarrow \mathrm{^{12}C}$, $^{16}\mathrm{O}$	$1.78 imes 10^8$	$1.39 imes 10^3$	$1.97 imes 10^6$	$M_{ m ZAMS} < 8 { m M}_{\odot}$
$^{12}\mathrm{C} ightarrow ^{16}\mathrm{O}$, $^{20}\mathrm{Ne}, ^{24}\mathrm{Mg}$	8.34×10^8	$2.39 imes 10^5$	2.03×10^3	$M_{\rm ZAMS} < 10 {\rm M}_{\odot}$
$^{20}\mathrm{Ne} ightarrow \mathrm{^{16}O}$, $^{24}\mathrm{Mg}$	$1.63 imes 10^9$	$7.24 imes10^6$	0.732	
$^{16}\mathrm{O} \rightarrow {}^{28}\mathrm{Si}, {}^{32}\mathrm{S}$	1.94×10^9	$6.66 imes 10^6$	2.58	
$^{28}\mathrm{Si} \rightarrow \mathrm{Fe}$	3.34×10^9	4.26×10^7	$5.01 imes 10^{-2}$	

Overview of core burning stages for a massive, $M_{\rm ZAMS}=15\,{\rm M}_{\odot}$ star. The last reaction of other stars is also indicated.

Type la supernova

- White dwarf accumulates too much matter, undergoes a thermonuclear explosion
- Star is completely unbound, no compact remnant (e.g. neutron star) left behind
- Very similar light curves, important "standard candles" for measurements of the universe
- ν signal: over in 1 3 seconds, is 4-5 orders of magnitude less luminous than a CCSN!

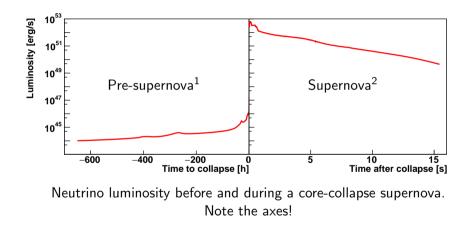

Pair instability supernova?


 $\gamma\leftrightarrow e^++e^-\rightarrow \nu_e+\bar{\nu}_e$ processes is highly temperature dependent Once carbon burning reached, unbinds stars that are too massive Possible for stars $140~{\rm M}_\odot \lesssim M_{\rm ZAMS} \lesssim 260~{\rm M}_\odot$ Thermonuclear explosion, star completely unbinds ν emission:

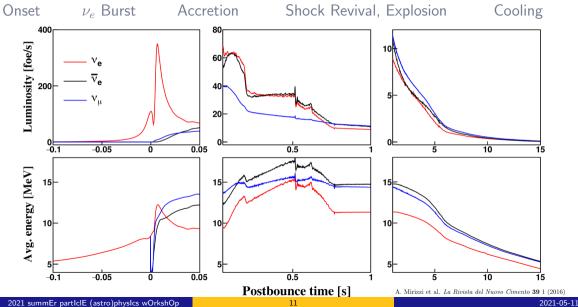
- \bullet Duration ${\sim}30$ seconds, spectrum does not change rapidly
- $\bullet \ {\sim}2$ orders of magnitude more than type Ia from white dwarf accretion
- $\bullet~{\sim}3$ orders of magnitude lower than CCSN

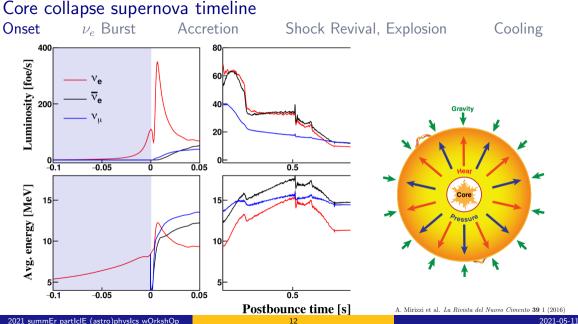
Late-stage evolution of massive stars (8 $M_{\odot} \lesssim M_{\rm ZAMS} \lesssim 40 M_{\odot}$)

- Star develops an onion-like structure. Ends up with an Fe core (or ONeMg)
- After central carbon burning begins, the star emits more energy as neutrinos than as light
- Emission of neutrinos is temperature dependent and increases as the star ages
- Neutrinos in the last \sim days before SN can be detected if close enough!



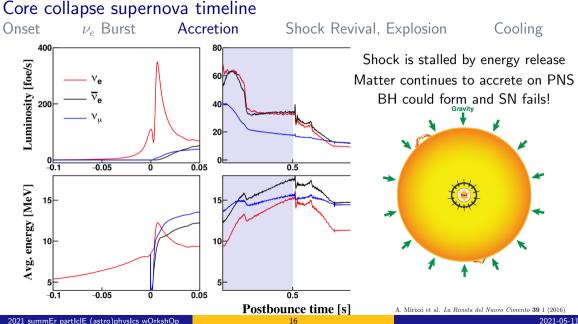
Copyright @ Addison Wesley


1 foe = 10^{44} J = 10^{51} erg

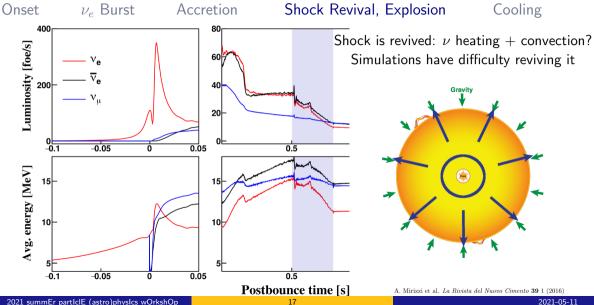

Core collapse supernovae

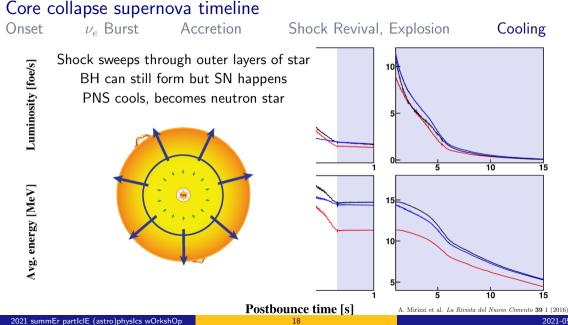
 $^{^{125}}M_{\odot}$ model from A. Odrzywolek et al. Acta Physica Polonica B **35** 1981 (2004), A. Odrzywolek et al. Acta Physica Polonica B **41** 1611 (2010) 2 LS220-s27.0co model from A. Mirizzi et al. La Rivista del Nuovo Cimento **39** 1 (2016)

Core collapse supernova timeline


Core collapse supernova timeline Onset ν_e Burst Accretion Shock Revival, Explosion Cooling 400 80 Luminosity [foe/s] Core begins to collapse under gravity 60 200 40 Gravity 20 -0.05 0.05 0.5 -0.1 Avg. energy [MeV] Cor 15 15 10 10 5 -0.05 0.05 0.5 -0.1 0 **Postbounce time [s]** A. Mirizzi et al. La Rivista del Nuovo Cimento 39 1 (2016) 2021-05-11

Core collapse supernova timeline Onset ν_e Burst Accretion Shock Revival, Explosion Cooling 400 80 $\gamma + {}^{56}\text{Fe} \rightarrow 13\alpha + 4n$ Luminosity [foe/s] $e + p \rightarrow n + \nu_e$ 60 200 40 Gravity 20 -0.1 -0.05 0.05 0.5 Avg. energy [MeV] 15 15 10 10 5 -0.05 0.05 0.5 -0.1 0 **Postbounce time [s]** A. Mirizzi et al. La Rivista del Nuovo Cimento 39 1 (2016)

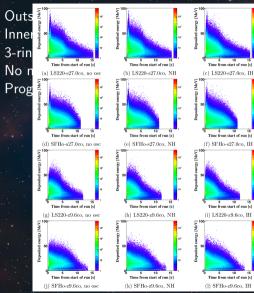

2021 summEr partIcIE (astro)physIcs wOrkshOp


2021-05-11

Core collapse supernova timeline Onset ν_{e} Burst Accretion Shock Revival, Explosion Cooling 400 80 Strong force kicks in, core rebounds Luminosity [foe/s] Shock wave forms, propagates outward 60 Neutrinos of all types now made 200 40 20 -0.05 0.05 -0.1 0.5 Avg. energy [MeV] 15 15 10 10 5 0.05 0.5 -0.1 -0.05 0 **Postbounce time [s]** A. Mirizzi et al. La Rivista del Nuovo Cimento 39 1 (2016) 2021-05-11

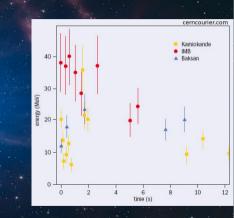
Core collapse supernova timeline

2021-05-11

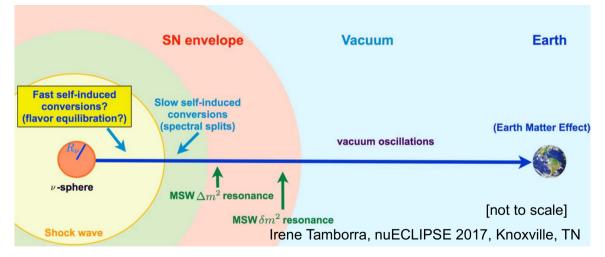

Crab Nebula SN 1054 SNR spans 10 ly Neutron star:

- radius \sim 10 km
- mass \sim 1.4 ${\rm M}_{\odot}$

NASA, ESA, NRAO/AUI/NSF and G. Dubner (University of Buenos Aires)


SN 1987A

Outside the Milky Way Galaxy (LMC - 50 kpc) Inner ring \sim 1 ly diameter 3-ring system ejected \sim 20,000 yr prior to SN No neutron star detected (yet) Progenitor identified by telescopes SN 1987A


kpc)

5N

ESO/L. Calçada

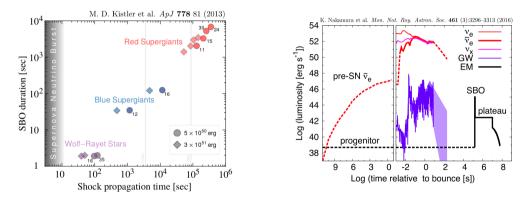
Neutrino oscillations

Photons vs Neutrinos

Energy budget of a CCSN:

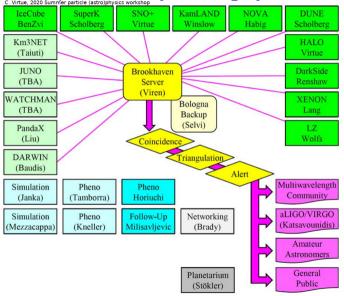
$$\Delta V = \left(\frac{3}{5}\frac{GM^2}{R}\right)_{\rm PNS} - \left(\frac{3}{5}\frac{GM^2}{R}\right)_{\rm Fe\ core} \approx 3 \times 10^{53}\ {\rm erg} = 3 \times 10^{46}\ {\rm J}$$

Only ${\sim}1$ % of this goes to light and kinetic energy. Most to neutrinos $(10^{58} \, \nu' s)!$


Mean free path l (average distance travelled before interacting):

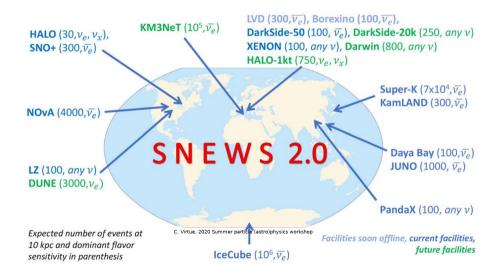
$$l = \frac{1}{\sigma n}$$

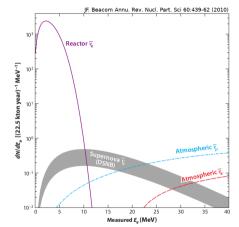
Mean free path of photon: 1 mm in the sun Mean free path of neutrino: 20 light years through lead Supernova neutrinos probe the core of a supernova! Observations of photons are still important (progenitor information, distance, nucleosynthesis, SN classification, etc.)


Multi-messenger signals of a CCSN

Nothing is visible to astronomers until the shock reaches the edges of the star (shock breakout)

Neutrinos can be used as an advanced alert!


The SuperNova Early Warning System


- Takes in alerts from neutrino detectors
- Distribute alert to multi-messenger community
- SNEWS 2.0 updates (soon):
 - Directional information
 - ► pre-supernova alert
- Amateur astronomers play an important role!

SNEWS 2 Contributing Experiments

The Diffuse Supernova Neutrino Background

- Most detectors are waiting for the next SN: no indication of when this will happen
- So many SN have occurred that the universe should be "full" of ν from SNe
- Measurement of the neutrino background (DSNB) could shed light on:
 - Average SN ν spectrum
 - Total SN rate
 - etc.
- Next-generation experiments may be sensitive enough to detect the DSNB

Concluding Remarks

- Core-collapse SN (CCSN) occur for stars $8~{\rm M}_\odot \lesssim M_{\rm ZAMS} \lesssim 40~{\rm M}_\odot$
- \bullet CCSN emit $10^{58}~\nu{\rm 's},$ the most out of all SN
- Pre-SN ν also detectable if nearby
- ν escape a SN before light
- SNEWS: multi-messenger alert using ν
- Many things we don't know about SN, could be uncovered with the next galactic SN
- Next up: A dedicated supernova neutrino detector, HALO