Caleb Miller (about me)

• BSc UNBC

- MSc Queen's, SNO+
 - Tellurium cosmogenic activation
 - Acrylic compatibility with scintillator cocktail
- PhD Candidate at UVic, BaBar and Belle II
 - Neutron detection to study beam backgrounds
 - MC generator validation and theory comparison
 - Development of new beam polarimetry technique

Belle II

On the precision frontier

SuperKEKB

- 3 km circumference e⁺e⁻ collider
- Located at KEK in Japan
- "B-factory" 10.577 GeV CM Energy (Y(4S))

Luminosity Goals

- SuperKEKB is designed to set a luminosity record at 8x10³⁵ cm⁻²s⁻¹
- Luminosity: particles per area per second
- Will allow us to collect a huge amount of data
- 50 ab⁻¹ over experiment lifetime
- 100x times more than BaBar or Belle collected
- Lets us measure properties of particles to sub-percent precision

Belle II

- Upgrade to the existing Belle detector
- Merged collaboration of the Belle and BaBar groups
- ~1000 active members
 - ~400 grad students+50 undergrads
- Layers of sub detectors
 - 1. PXD (VXDa)
 - 2. SVD (VXDb)
 - 3. CDC
 - 4. TOP + ARICH
 - 5. ECL
 - 6. KLM

VXD

- The Vertex Detector is made of 6 layers of silicon detectors
- The first 2 layers use square "pixels" ($50\mu m \times 50\mu m$) and are known as the PXD (silicon **Pixel D**etector)
- The next 4 use strips of silicon (12cm×6cm) and are known as the SVD (**S**ilicon **V**ertex **D**etector)

CDC

- The Central Drift Chamber does all the tracking of charged particles
- 1.13 m in radius with 14336 sense wires, all inside a 1.5 T magnetic field
- Tells us the charge, momentum (p), and dE/dx of each charged track

TOP + ARICH

- The Time Of Propagation and Aerogel Ring Cherenkov detectors significantly improve particle identification
- Both use Cherenkov radiation to determine the speed of particles, $\cos\theta = (\eta\beta)^{-1}$
- Using the momentum from the CDC we can extract the rest mass, $p=\gamma m_0 v$

ECL

- The Electromagnetic Calorimeter detects photons and stops most electrons and pions
- We can use E/p to identify electrons from pions with high efficiency
- Made of 8736 thallium-doped caesium iodide crystal (CsI(TI)) covering 90% of the solid angle
- Large Canadian contribution
- → Pulse Shape Discrimination developed at UVic
- → UBC is responsible for timing calibrations

KLM

- •
- The ${\bf K}_{\rm L}$ and ${\bf M}{\rm uon}$ detector is the final layer of Belle II Consists of alternating sheets of iron and scintillator
- Stops the rest of the high energy hadrons, waves at the muons as they go by

Belle II Physics

- CP violation in the quark sector (Do particles behave the same as antiparticles)
 - Currently in the SM there is not enough to explain why there's more matter in the universe
 - $\circ~$ By making precise measurements of b—s and b—d quarks we could discover more CP violation
- Multiple Higgs Bosons
 - We don't have enough energy to produce Higgs' directly but we can still detect their effects
- Lepton Flavour Violation
 - We can look for and set limits on processes such as $\tau \rightarrow \mu \gamma$
- Dark Sector
 - Are there dark matter particles enhancing certain process, or carrying away energy?
- And much more

Multiple Higgs Bosons

- The Higgs Boson couples to matter and gives it mass
- Therefore processes involving heavier particles should be more sensitive to them

$$egin{aligned} \Gamma_{\Upsilon o \ell \ell} &= 4 lpha^2 e_q^2 \, rac{|\Psi(0)|^2}{M^2} (1 + 2 m_\ell^2/M^2) \sqrt{1 - 4 m_\ell^2/M^2} \ R_{ au \mu} &= rac{\Gamma_{\Upsilon o au au}}{\Gamma_{\Upsilon o \mu \mu}} = rac{(1 + 2 m_ au^2/M^2) \sqrt{1 - 4 m_ au^2/M^2}}{(1 + 2 m_\mu^2/M^2) \sqrt{1 - 4 m_\mu^2/M^2}} \end{aligned}$$

Dark Matter

 e^{-}

Belle II has published a search for • a Z' from 276 pb⁻¹ (0.005% of expected full data)

Search for an Invisibly Decaying Z' Boson at Belle II in $e^+e^- \rightarrow \mu^+\mu^-(e^\pm\mu^\mp)$ **Plus Missing Energy Final States**

I. Adachi,^{21,18} P. Ahlburg,⁹⁵ H. Aihara,¹¹¹ N. Akopov,¹¹⁷ A. Aloisio,^{86,33} N. Anh Ky,^{30,12} D. M. Asner,² H. Atmacan,⁹⁷ T. Avabay,⁵⁶ V. Avabay,⁷⁸ T. Aziz,⁷⁹ V. Paby,¹⁰ S. Pache,⁴⁴ P. Pambada,⁴⁹ Sur Papagia,¹⁰⁰ V. Papagia,¹⁰⁰ V. Papagia,¹⁰⁰ V. Papagia,¹⁰¹ V. Papagia,¹⁰¹ V. Papagia,¹⁰² V. Papagia,¹⁰³ V. Papagia,¹⁰⁴ V. Papagia,¹⁰⁵ V. Pa

Dark Matter

 Belle II has also published a search for axions from 445 pb⁻¹ (0.009% of expected full data)

PHYSICAL REVIEW LETTERS 125, 161806 (2020)

Search for Axionlike Particles Produced in e^+e^- Collisions at Belle II

F. Abudinén,⁴² I. Adachi,^{21,18} H. Aihara,¹¹⁵ N. Akopov,¹²¹ A. Aloisio,^{87,35} F. Ameli,³⁹ N. Anh Ky,^{32,11} D. M. Asner,² T. Aushev,²³ V. Aushev,⁷⁷ V. Babu,⁹ S. Baehr,⁴⁶ S. Bahinipati,²⁵ P. Bambade,⁹ Sw. Banerjee,¹⁰⁵ S. Bansal,⁶⁸ J. Baudot,⁹⁷ L. Becker,⁴⁶ P. K. Behera,²⁷ I. V. Bennett,¹⁰⁹ F. Bernieri,⁴⁰ F. H. Bernlechner,⁹⁹ M. Bertemes,²⁹ M. Bessner,¹⁰²

"Chiral" Belle

- Belle II just started data taking which means it's time to think about upgrades
- One promising upgrade path is a polarized electron beam

Polarimetry

- Precision of the measurements is limited by the precision we can know the average beam polarization
- Tau Polarimetry!

Polarimetry

Polarimetry

• Using 30 fb⁻¹ of BaBar data we measured:

$$< P >= 0.0135 \pm 0.0106_{
m stat} \pm 0.0045_{
m sys}$$

- Working now on full dataset and getting a publication out
- Starting to reproduce the analysis on Belle II

Summary

- Belle II is taking data and there's plenty of topics to work on
- Data Analysis, Software Development, Hardware, Theory
- In Japan!
 - Sushi, Ramen, Okonomiyaki

Thank you all for listening Enjoy your summer!

