SUPER BODS Cryogenic Dark Matter Search

Eleanor Fascione, May 7th 2021

Lucas Bezerra

Aditi Pradeep Ashley Li

Super Cryogenic Dark Matter Search (SuperCDMS)

- Use cryogenic detectors to search for dark matter interactions with standard model matter
- Previously operated at Soudan, Minnesota
- Currently undergoing installation of the next generation at SNOLAB
 - Improving upon detector technologies
 - Lower backgrounds

3

Talk Overview

- Detector physics and technologies
- SuperCDMS SNOLAB
- R&D Devices and the CUTE Facility

Detector Physics and Technologies

SuperCDMS Detector Concepts

- Germanium and silicon detectors at cryogenic temperatures (<50mK)
- Particle interactions with Ge/Si atoms produce vibrations (phonons) and electrical charge (electron-hole pairs)

WIMPs and Neutrons scatter from the Atomic Nucleus

> Photons and Electrons scatter from the Atomic Electrons

Recoil Type

- Nuclear recoils: WIMPs, neutrons
- Electron recoils: most backgrounds, some DM candidates (e.g. ALPs, dark photons)

Energy Measurement

Transition edge sensors (QETs)

Phonons are measured via Quasiparticle trap assisted Electrothermal feedback

Neganov-Trofimov-Luke (NTL) Effect

- Charges in the crystal lattice drifting across an applied potential will produce additional phonons called NTL phonons
- Energy in NTL phonons is proportional to applied voltage across the detector
- Results in sensitivity to much lower energies

Sensors measure Et, and neh

Sensors measure Et

9

SuperCDMS SNOLAB Detectors

iZIP and HV detectors with new sensor layout in two materials:

- Ge lower DM cross section sensitivity
- Si lower DM mass sensitivity

Larger than Soudan detectors (100mm diameter, 33mm thick)

iZIP

- 6-8V bias (minimal NTL phonon contribution)
- NR/ER discrimination
- Surface event removal

High Voltage (HV)

- 100V bias (NTL phonons dominate)
- Much lower threshold
- No recoil type discrimination

interleaved Z-sensitive Ionization and Phonon (iZIP) Detectors

- iZIP detectors measure phonons and charge gives recoil type discrimination
 - WIMP DM does not interact electromagnetically, and will interact with the nucleus in a 'nuclear recoil'
 - Most backgrounds will interact electromagnetically in an 'electron recoil'
 - The charge yield of each recoil type is different
- Surface events are a problem are usually background events and have incomplete charge collection (can mistake ERs for NRs)
- Interleaved electrode and phonon sensor layout gives electric field that allows for zsensitivity and surface event rejection

Electric field and z-sensitivity

11

High Voltage (HV) Detectors

- New detector type based on operation of SuperCDMS Soudan iZIP detectors at high (~70 V) bias (called CDMSlite mode)
 - 2 sided bias for uniform E-field
 - Channel layout optimized for position sensitivity •
 - No charge readout
- Higher density phonon sensor coverage (35%) compared to iZIP (4%) decreased phonon collection time
- Improved energy resolution and lower threshold

SuperCDMS SNOLAB

SuperCDMS SNOLAB

- 7 tower capacity, 6 detectors per tower
- Commissioning planned for 2022
- First run with 4 towers

SuperCDMS SNOLAB

Detector tower (disassembled)

15

SuperCDMS SNOLAB Construction

Construction is progressing!

low radon cleanroom

seismic platform

SuperCDMS SNOLAB Goal (SI WIMP DM)

EIEIOO 2021, SuperCDMS

SuperCDMS Collaboration (2016) 10.1103/PhysRevD.95.082002

SuperCDMS SNOLAB Sensitivity

Dark Matter Mass Ranges Traditional NR Low Threshold NR HV NR Electron recoil HV, no discrimination Absorption (dark photons, ALPs)

- iZIP, "background free" iZIP, limited discrimination HV, no discrimination HV, no discrimination

 $\gtrsim 5 \text{ GeV}$ $\gtrsim 1 \text{ GeV}$ $\sim 0.3 - 10 \, \text{GeV}$ $\sim 0.5 \text{MeV} - 10 \text{ GeV}$ \sim 1 eV – 500 keV ("peak search")

18

R&D Devices and CUTE Facility

Cryogenic Underground TEst (CUTE) Facility

• Internal and external lead shields

- A low background test facility at SNOLAB
 - Cryogen-free dilution refrigerator
 - Capable of operating a single SuperCDMS tower
 - Goal: characterize SuperCDMS SNOLAB detectors

 - Rock overburden
 - Water tank (1.5m radius)
 - Polyethylene shield

Suspension system

- Vibration isolation •
- Active damper system to account • for lab pressure changes

Cryogenic Underground TEst (CUTE) Facility

Polyethylene shield

- A low background test facility at SNOLAB
 - Cryogen-free dilution refrigerator
 - Capable of operating a single SuperCDMS tower
 - Goal: characterize SuperCDMS SNOLAB detectors
 - Rock overburden
 - Water tank (1.5m radius)
 - Internal and external lead shields

Suspension system

- Vibration isolation •
- Active damper system to account • for lab pressure changes

CUTE and SuperCDMS

- CUTE is currently managed by SuperCDMS
- Management will eventually be transferred • to SNOLAB

CUTE at SNOLAB

HVeV Detectors

- electron-hole pairs
- surface facilities

EIEIOO 2021, SuperCDMS

Cryogenic PhotoDetectors

- Optimized for photon detection
- Single distributed channel for fast athermal phonon collection time
- No bias voltage applied •
- Low threshold (~20eV) and very good energy resolution (~4eV) •
- Very competitive for low mass DM search via nuclear recoils

• Two CPD devices have been operated at the CUTE facility!

arXiv:2009.14302, submitted to APL

arXiv:2007.14289, submitted to PRL, in revisions

Questions?

QETS

M. Bowles PhD thesis

