
PyROOT in the Lab

Jean-François Caron

Queen's University

May 3, 2021

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 1 / 22



What is PyROOT?

PyROOT is a bridge allowing you to call C++ ROOT functions from a

python program. It is automatically generated from the ROOT source

code, so the classes and functions are all equivalent.

Pros

Few new interfaces to learn.

High-performance with built-in

ROOT objects.

Flexibility and scope of Python

language and standard library.

Can add-in 3rd-party numerical

python libraries.

Cons

Python-side performance can be

worse than doing it in C++.

Need to code-switch between

Python and C++.

More libraries to install.

Sometimes need workarounds for

ROOT weirdness.

My strategy: use compiled C++ code with ROOT libraries for heavy

number-crunching, but use PyROOT for exploration, interactive use, and

plotting.

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 2 / 22



Your Primary Tool: TGraph

The ROOT TGraph is a basic 2D graph of X vs Y .
# python3 -i demo_tgraph.py
import ROOT , array

x = array.array("d",range (10)) # "d" for double -precision floating -point.
y = array.array("d" ,[0]*len(x))# array of ten zeros.

for i,xi in enumerate(x):
y[i] = xi**2

g = ROOT.TGraph(len(x),x,y)
g.Draw("AL")

# https :// docs.python.org/3/ library/array.html Python array module
# https :// root.cern.ch/doc/master/classTGraph.html TGraph Documentation
# https :// root.cern.ch/doc/master/classTGraphPainter.html TGraph Draw Options
# https :// root.cern.ch/doc/master/classTMath.html TMath Documentation

Numpy arrays can also be used instead of array.array.

You can also create an empty ROOT.TGraph(N) and �ll the points in one by one

using g.SetPoint(i,a,b).
Exercises (3 minutes):

1 Try plotting ROOT.TMath.Sin or your favourite function.

2 Try g.GetXaxis().SetTitle("foo") and g.SetTitle("bar").

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 3 / 22



Histograms: TH1D

Histograms are frequently used in particle physics. In ROOT they play a

more central role than even TGraphs. You create them with a certain range

of bins and �ll them with values.
# python3 -i demo_th1d.py
import ROOT

rng = ROOT.TRandom3 (1234) # Random number generator object
# Parameters are: Number of bins , lowest edge , highest edge
h = ROOT.TH1D("h","Histogram Title", 10, 0, 10)
for i in range (500):

value = rng.Gaus (5,1)
h.Fill(value)

h.Draw()
# https :// root.cern.ch/doc/master/classTH1.html TH1* Documentation
# https :// root.cern/doc/master/classTHistPainter.html TH1* Draw Options
# https :// root.cern.ch/doc/master/classTRandom3.html TRandom3 Documentation

The TH1D class is full-featured: you can set variable bin widths, �ll with

di�erent weights, change bin statistics, interface to �tting, etc.
Note: there is no reason to use the other TH1* types.

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 4 / 22



Reading Files 0: Fake Data

So you can make graphs, but how do you get the data from a �le into the

program? First, let's generate an example text �le to work with.
# python3 demo_generate_data.py
import ROOT , csv

outfilename = "demo_data_file.csv"
n_lines = 10000
random_seed = 1337 # Fixed seed for reproducibility
rng = ROOT.TRandom3(random_seed) # Random number generator object
t, tau = 0, 500 # Average time interval for simulated Poisson process.

outfile = open(outfilename ,"w") # "write" mode.
outfile.write("# Generated using ROOT.TRandom3 with seed %d\r\n" % random_seed)
outfile.write("# tau = %d\r\n" % tau)
outfile.write("# time , binomial , gaussian\r\n")
writer = csv.writer(outfile)

for i in range(n_lines ):
t += rng.Exp(tau) # Exponential distribution with tau
var2 = rng.Binomial (20 ,0.2) # 20 trials , 0.2 chance of success
var3 = rng.Gaus (0,1) # central value 0, width 1
writer.writerow ([t,var2 ,var3])

outfile.close ()

# References
# https :// root.cern.ch/doc/master/classTRandom3.html
# https :// docs.python.org/3/ library/csv.html

Exercise (1 minute): Examine the output �le with wc and less.
J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 5 / 22



Reading Files 1: Manually Filling a TTree

import ROOT , array , csv # python3 demo6_ttree_manual.py

infilename = "demo_data_file.csv"
outfilename = infilename.replace(".csv",".root")
treename = infilename.replace(".csv","")
outfile = ROOT.TFile(outfilename ,"RECREATE") # Erases any existing file.

# Create a one -element python array to hold the value (could also use numpy ).
time_arr = array.array("d" ,[0])
binomial_arr = array.array("l" ,[0]) # And so on for every variable ...

# Create the tree and the branch manually.
t = ROOT.TTree(treename ,"tree title")
t.Branch("time", time_arr , "time/D") # D for doubles
t.Branch("binomial", binomial_arr , "binomial/L") # L for integers

# Now loop over the file manually:
with open(infilename ,"r") as csvfile:

reader = csv.reader(csvfile)
for row in reader:

if row [0]. startswith("#"): # skip comment lines
continue

time_arr [0] = float(row [0]) # Important: change the CONTENT of the arrays.
binomial_arr [0] = int(row [1])
t.Fill()

# Write the data from the TFile to the actual file on disk.
outfile.Write ()
outfile.Close ()

# Reference: https :// root.cern.ch/doc/master/classTTree.html (Ctrl+F for PyROOT)
# https :// docs.python.org /3/ library/array.html

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 6 / 22



Reading Files 2: TTree.ReadFile

# python3 demo2_ttree_readfile.py
import ROOT

infilename = "demo_data_file.csv"
outfilename = infilename.replace(".csv",".root")
treename = infilename.replace(".csv","") # Give the tree the same name as the file.

# Create the ROOT TFile.
outfile = ROOT.TFile(outfilename ,"RECREATE") # Erases any existing file.

# Create the tree. New TTrees are automatically added to the current TFile , if any.
t = ROOT.TTree(treename ,treename)
# Define branches of a TTree
# The syntax is branchname/typecode:branchname/typecode ...
branches = "time/D:binomial/L:gaussian/D" # L for integers , D for floats

t.ReadFile(infilename ,branches)

# Write the data from the TFile to the actual file on disk.
outfile.Write ()
outfile.Close ()
# References:
# https :// root.cern.ch/doc/master/classTFile.html
# https :// root.cern.ch/doc/master/classTTree.html#a9c8da1fbc68221b31c21e55bddf72ce7

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 7 / 22



Working with TTrees

Exercise (5 minutes): enter these commands interactively in python.

Remember to use tab-completion to save on typing!
import ROOT

infile = ROOT.TFile("demo_data_file.root","READ")

# Check the contents of the file
infile.ls()

# Get the tree out of the file
tree = infile.Get("demo_data_file")
# NOTE: a failed "Get" returns <cppyy.gbl.TObject object at 0x(nil)>

# Show the contents of the 0th entry and number of entries
tree.Show (0)
N = tree.GetEntries ()
print(N)

# Shows a summary of the contents of the whole tree.
tree.Print ()

# You can also get the list of branches programmatically:
for b in tree.GetListOfBranches ():

print("branch:",b.GetName ())

# Once "got", each branch can be accessed as a data member of the tree.
for i in range (5):

tree.GetEntry(i)
print(tree.time ,tree.gaussian)

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 8 / 22



Making Plots

# python3 -i demo8_ttree_draw.py
import ROOT

infile = ROOT.TFile("demo_data_file.root","READ")
tree = infile.Get("demo_data_file")

tree.Draw("binomial") # ROOT has an algorithm to guess decent histogram boundaries.
htemp = ROOT.gROOT.FindObject("htemp") # Temporary histograms are called "htemp"
# NOTE: a failed FindObject returns <cppyy.gbl.TObject object at 0x(nil)>
h1 = htemp.Clone("h1") # Clone to make sure it doesn't get deleted.
input("Press Enter to continue.")

# You can give your histogram an explicit name and binning:
tree.Draw("binomial >> h2(10,0,15)")
h2 = ROOT.gROOT.FindObject("h2") # Bring "h2" over to the python side.
input("Press Enter to continue.") # NOTE: click on the canvas to force an update.

tree.Draw("gaussian:time") # Unbinned 2D scatter plot TGraphs are made with y:x
g1 = ROOT.gROOT.FindObject("Graph"). Clone("g1") # Temporary is called "Graph"
# NOTE: if you use the >>name notation , it instead makes a BINNED TH2*!
g1.Draw("AP") # Remember to draw the clone before working on it further.
g1.SetTitle("Noise")

# References:
# https :// root.cern.ch/doc/master/classTTree.html#a73450649dc6e54b5b94516c468523e45

Exercise (3 minutes):

1 Draw a histogram or graph of a quantity of your choosing, with proper

axis labels.
J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 9 / 22



Saving and Exporting

To properly save �gures, you need to save the TCanvas, not the TGraph or

TH1. The active canvas can be saved with ROOT.gPad.SaveAs("foo.pdf") or:
# python3 -i demo9_saving.py
import ROOT

infilename = "demo_data_file.root"
infile = ROOT.TFile(infilename ,"READ")
treename = infilename.replace(".root","")
tree = infile.Get(treename)

# Create a TCanvas. New canvases are automatically set to the active one.
c1 = ROOT.TCanvas("c1")

# Draw your thing.
tree.Draw("gaussian:time")
c1.SaveAs("plots/demo9_binomial.png") # png makes lightweight figures , but scale badly.
c1.SaveAs("plots/demo9_binomial.pdf") # scales well , but can be huge with lots of points.
c1.SaveAs("plots/demo9_binomial.tex") # Figure for inclusion in a LaTeX document.
c1.SaveAs("plots/demo9_binomial.C") # Useful format to re-load into ROOT later.

Exercise (2 minutes):
1 Save the �gure from the last exercise in the four formats shown.
2 Try to view the ouput �les (as text or as �gures)

(evince for pdf, eog for png).
3 Look at the size di�erence in the output �les with ls -lh plots.

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 10 / 22



Aside: The Power of PyROOT

You can add all sorts of functionality in Python. Here is a function I made to
automatically timestamp and move a �le. I use it before saving �gures.

import os , datetime

def ArchiveExisting(fname ):
""" This function takes a filename (relative or absolute) and checks to see
if such a file already exists. If it doesn't, nothing is done. If a file already
exists , then it moves the existing file into a directory "old" in the same final
directory as the file , and appends a timestamp to the filename of the moved file.
If "old" does not exist , it is created."""
if not os.path.exists(fname):

return
head ,tail = os.path.split(fname)
olddir = os.path.join(head ,"old")
if not os.path.exists(olddir ):

os.mkdir(olddir)
elif not os.path.isdir(olddir ):

raise RuntimeError("Need to create directory "+
olddir+" but file already exists with that name")

timestamp = datetime.datetime.now(). strftime("_%Y%m%d%H%M%S")
barename ,ext = os.path.splitext(tail)
archivename = os.path.join(olddir ,barename+timestamp+ext)
os.rename(fname ,archivename)
return

You could write this in C++ too, but in Python it's way easier!
Homework: Use the python documentation to �gure out exactly how this works.

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 11 / 22



Advanced Drawing

# python3 -i demo9b_advanced_drawing.py
import ROOT

infile = ROOT.TFile("demo_data_file.root","READ")
tree = infile.Get("demo_data_file")

tree.GetEntry (0)
t0 = tree.time # Get t0 so we can plot with relative time.
drawstring = "TMath::Power(time /(1.0* Entry$ ) -500 ,2):((time -%g)/1e3)" % t0
tree.Draw(drawstring)

g1 = ROOT.gROOT.FindObject("Graph"). Clone("g1")
g1.Draw("ALP")
g1.GetXaxis (). SetRangeUser (0 ,1000) # "User" coordinates means in the graph units.
g1.SetMaximum (2500) # Setting the range in Y is different than in X.
g1.SetMinimum (0)

# Arbitrary C++-style expressions are allowed with the names in the TTree.
# The C++ ternary operator (A ? B : C) is available , so you can do anything!
# Special names are also available: Entry$ , Entries$ , Sum$ , etc.
# Also functions from ROOT.TMath:: and the C++ std::cmath modules. NOTE: "::"
# Reference: https :// root.cern.ch/doc/master/classTFormula.html
# https :// root.cern.ch/doc/master/namespaceTMath.html
# https ://www.cplusplus.com/reference/cmath/
# https :// root.cern.ch/doc/master/classTTree.html#a73450649dc6e54b5b94516c468523e45
# https :// root.cern.ch/root/htmldoc/guides/users -guide/ROOTUsersGuide.html Sec. 9.3.3

This method can take you surprisingly far, and it's very fast because the looping
happens outside of Python.

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 12 / 22



Stacking Histograms

# python3 -i demo10_stacks.py
import ROOT

infile = ROOT.TFile("demo_data_file.root","READ")
tree = infile.Get("demo_data_file")

c1 = ROOT.TCanvas ()
tree.Draw("gaussian >> h1")
h1 = ROOT.gROOT.FindObject("h1")
tree.Draw("gaussian /(1.0* binomial) >> h2")
h2 = ROOT.gROOT.FindObject("h2")
h2.SetLineColor(ROOT.kRed)

hs = ROOT.THStack("hs","THStack")
hs.Add(h1)
hs.Add(h2)
hs.Draw("NOSTACK") # Default draw stacks 'em vertically , so we need NOSTACK.

# 2D coordinates go X1 ,Y1 ,X2,Y2, (0,0) is at bottom left , (1,1) is at top right.
# NDC means Normalized Device Coordinates
tl = ROOT.TLegend (0.6 ,0.6 ,0.9 ,0.9 ,"Header Text","NDC")
tl.AddEntry(h1 ,"Gaussian")
tl.AddEntry(h2 ,"Gaus/Binom")
tl.Draw()

# Reference:
# https :// root.cern.ch/doc/master/classTHStack.html
# https :// root.cern.ch/doc/master/classTLegend.html

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 13 / 22



Stacking Graphs

# python3 -i demo11_stacks.py
import ROOT

infile = ROOT.TFile("demo_data_file.root","READ")
tree = infile.Get("demo_data_file")

c1 = ROOT.TCanvas ()
tree.Draw("gaussian:time")
g1 = ROOT.gROOT.FindObject("Graph"). Clone("g1")
tree.Draw("gaussian/binomial:time")
g2 = ROOT.gROOT.FindObject("Graph"). Clone("g2")
g2.SetLineColor(ROOT.kRed)

mg = ROOT.TMultiGraph("mg","TMultiGraph")
mg.Add(g1)
mg.Add(g2)
mg.Draw("AL") # Don't need NOSTACK for TMultiGraph (blame ROOT)

# 2D coordinates go X1 ,Y1 ,X2,Y2, (0,0) is at bottom left , (1,1) is at top right.
tl = ROOT.TLegend (0.6 ,0.1 ,0.9 ,0.3 ,"","NDC")
tl.AddEntry(g1 ,"Gaussian")
tl.AddEntry(g2 ,"Gaus/Binom")
tl.Draw()

# Reference:
# https :// root.cern.ch/doc/master/classTMultiGraph.html
# https :// root.cern.ch/doc/master/classTLegend.html

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 14 / 22



Error Bars

Use TGraphErrors, TGraphAsymmErrors, etc.

# python3 -i demo12_errors.py
import ROOT , array

x = array.array("d",range (10))
y = array.array("d" ,[xi**2 for xi in x])
x_errors = ROOT.nullptr # Use ROOT.nullptr where you'd otherwise send 0 or NULL.

y_errors = array.array("d" ,[0]*len(y))
for i,yi in enumerate(y):

y_errors[i] = ROOT.TMath.Sqrt(yi)

g = ROOT.TGraphErrors(len(x), x, y, x_errors , y_errors)
g.Draw("AP")

# Reference: https :// root.cern.ch/doc/master/classTGraphErrors.html
# https :// root.cern.ch/doc/master/classTGraphAsymmErrors.html

Unfortunately you cannot create TGraphErrors directly with TTree.Draw.

Exercise (0.5 minutes):

1 Try g.Print().

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 15 / 22



Aside: The Power of PyROOT 2

import numbers , array , ROOT

def get_error(e,N):
if e is None:

error = ROOT.nullptr
elif isinstance(e, numbers.Number ):

error = array.array('d',[e]*N)
else:

assert len(e) == N
error = array.array('d',e)

return error

def AddErrors(g,ex = None ,ey = None):
""" Takes a TGraph and turns it into a TGraphErrors with either
fixed or array errors."""
N = g.GetN()
xbuf = g.GetX() # Returns a "read -write buffer" which is a dumb array.
xbuf.SetSize(N) # So we have to tell it what size it is.
x = array.array('d',xbuf)
ybuf = g.GetY()
ybuf.SetSize(N)
y = array.array('d',ybuf)

xerror = get_error(ex,N)
yerror = get_error(ey,N)

ge = ROOT.TGraphErrors(N,x,y,xerror ,yerror)
ge.SetName(g.GetName ()+"_e")
return ge

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 16 / 22



Basic Fitting 1

ROOT has too many ways to �t things. This is just one way.

# python3 -i demo13_fit.py
import ROOT

infile = ROOT.TFile("demo_data_file.root","READ")
tree = infile.Get("demo_data_file")

tree.Draw("gaussian >> h1")
h1 = ROOT.gROOT.FindObject("h1")

ftr_p = h1.Fit("gaus","S") # gaus , expo , pol0 , pol1 ... polN are shortcuts.
# Fit normally returns an empty TFitResultPtr , option "S" makes it Store the results.
ftr = ftr_p.Get() # You have to Get the TFitResult from the pointer. It's dumb.

central_value = ftr.Parameter (1)
width = ftr.Parameter (2)

# Reference:
# https :// root.cern.ch/doc/master/classTF1.html
# https :// root.cern.ch/doc/master/classTGraph.html#a61269bcd47a57296f0f1d57ceff8feeb
# https :// root.cern.ch/doc/master/classTGraph.html#aa978c8ee0162e661eae795f6f3a35589

Note the same process works for TGraphs. Exercise (1 minute):

1 Do ftr. and press tab twice.

2 Try some of the interesting methods listed.

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 17 / 22



Basic Fitting 2

You can de�ne your own function with a TF1 or with a C++ function.

# python3 -i demo14_fit2.py
import ROOT

infile = ROOT.TFile("demo_data_file.root","READ")
tree = infile.Get("demo_data_file")

c1 = ROOT.TCanvas ()
# The first empty "" is a TCut string the second is a draw option.
tree.Draw("sin(time /1000.0): time /1000.0","","" ,100,0) # Draw 100 entries starting at 0.
g1 = ROOT.gROOT.FindObject("Graph"). Clone("g1")
g1.Draw("ALP")
input("Press Enter to continue.") # Pause

f1 = ROOT.TF1("f1","[0]* sin(x/[1] + [2]) + [3]" ,0,50) # Generic sine function.
f1.SetParNames("scale","period","phase","offset") # Optional.
f1.SetParameters (1,1,0,0) # Set initial parameter guesses/
f1.SetNpx (600) # Increase the number of points in X.
# f1.Draw("same") # To see if our initial guess is close.
ftr_p = g1.Fit(f1 ,"S")
ROOT.gPad.Modified (); ROOT.gPad.Update () # This magic forces a canvas refresh.

# Reference:
# https :// root.cern.ch/doc/master/classTF1.html
# https :// root.cern.ch/doc/master/classTGraph.html#a61269bcd47a57296f0f1d57ceff8feeb
# https :// root.cern.ch/doc/master/classTGraph.html#aa978c8ee0162e661eae795f6f3a35589

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 18 / 22



Compiled C++ Extensions

// demo15_cpp_extension.C A terrible implementation of an exponential function.
double ext_power(double x, unsigned int a)
{

double result = 1;
for(unsigned int i = 0; i < a; i++)
{

result *= x;
}
return result;

}

# python -i demo15_usage.py
import ROOT

ROOT.gROOT.ProcessLine(".L demo15_cpp_extension.C+") # Normal ROOT command.

def py_power(x, a):
result = 1
for i in range(a):

result *= x
return result

x, a = 23.48 , 21
value_ext = ROOT.ext_power(x, a)
value_py = py_power(x, a)

Exercise (3 minutes):
1 Run demo15_usage.py with ipython -i

2 Use the %timeit "magic" to compare the speed of C++ and Python.
J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 19 / 22



Neglected Topics

1 �Collection� objects in TTrees

2 3D and higher plots, pro�le plots

3 TDataFrame

4 �Out parameters�

5 TTree.Scan

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 20 / 22



Getting Help

1 The ROOT forum is very active: https://root-forum.cern.ch/

2 ROOT User's Guide: https://root.cern.ch/root/htmldoc/

guides/users-guide/ROOTUsersGuide.html

3 ROOT Reference Guide: https://root.cern/doc/master/

4 PyROOT-speci�c tutorials:
https://root.cern/doc/master/group__tutorial__pyroot.html

5 The FreeNode IRC channels #python and #c++-basic are helpful.

6 Python o�cial documentation: https://docs.python.org/3/

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 21 / 22

https://root-forum.cern.ch/
https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html
https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html
https://root.cern/doc/master/
https://root.cern/doc/master/group__tutorial__pyroot.html
https://docs.python.org/3/


Major Exercise/Homework

You will probably not �nish (or start?) this during the workstop time.

1 Generate a new data set (as on slide 5) with the binomial distribution for
N = 20, 200, and 2000 trials.

2 Convert this data set to a ROOT TFile with a TTree in it (as on slide 7).

3 Plot the distributions in TH1Ds and put them together in a THStack
(as on slide 13).

4 Fit each of the distributions with a Gaussian function, note the Chi2/NDf
(as on slide 17).

5 Save the produced plot in your favourite format (as on slide 10).

6 Bonus: put the �t results in a TPaveText on top of the THStack plot.

J.-F. Caron (Queen's University) PyROOT in the Lab May 3, 2021 22 / 22


