

Hunting for Majorana neutrinos with nEXO

Thomas Brunner

McGill University and TRIUMF
The summer particle (astro)physics workshop
May 6, 2021

https://www.hep.physics.mcgill.ca/neutrino

My Career Path

Studied Physics at the Technical University Munich (2001 – 2011)

- Undergraduate research project
 - Programming of positron beam line in <u>LabView</u>
- Diploma thesis (MSc equivalent)
 - Investigation of positronium formation on cold surfaces
- PhD project, stationed at TRIUMF, Vancouver
 - In-trap decay spectroscopy with the TITAN EBIT

Post doctoral research fellow at Stanford (2011 – 2015)

EXO-200, nEXO, and Ba-tagging

Assistant professor at McGill (2015 – 2020)

• EXO-200, nEXO, Ba-tagging, and in-trap decay spectroscopy

Associate professor at McGill (2020 – now)

nEXO, Ba-tagging, and in-trap decay spectroscopy

Condensed matter physics

Particle/neutrino/nuclear physics

Don't be afraid to change fields!

I continued in research because of the people

May 6, 2021

Hunting for Majorana neutrinos with nEXO

What we hope to learn with nEXO

(Exactly how heavy are neutrinos?)

What is the quantum nature of the neutrino?

Quantum nature of the neutrino

"Dirac" neutrinos

$$v \neq \overline{v}$$

"Majorana" neutrinos

$$v = \overline{v}$$

Lepton number violated

Which way Nature chose to proceed is an open experimental question, although Majorana neutrinos are favored by theory.

The two descriptions are distinct and distinguishable only if $m_v \neq 0$.

Matter-Antimatter Asymmetry

Nothing in our theory tells us why there seems to be so much more matter than antimatter in the Universe.

This is a pretty big **asymmetry**, so we should look for symmetry violations.

Neutrinos could be the key!

How to search for Majorana neutrinos?

Double Beta Decay

 $0v\beta\beta$ – Can only happen for Majorana neutrinos! $T_{1/2} > 10^{25}$ y!

Double Beta Decay

 $2\nu\beta\beta$ $T_{1/2} \approx 10^{20} \text{ y}$

(light neutrino exchange mechanism only)

 M^{0v} is the nuclear matrix element

Searching for $0\nu\beta\beta$ in ¹³⁶Xe with liquid Xe TPC

Liquid-Xe Time Projection Chamber (TPC)

- Xe is used both as the source and detection medium.
- Monolithic detector structure, excellent background rejection capabilities.
- Cryogenic electronics in LXe (at ~168 K).
- Detection of scintillation light and secondary charges.
 - 2D read out of secondary charges at segmented anode.
 - Full 3D event reconstruction using also scintillation light:
 - 1. Energy reconstruction
 - 2. Position reconstruction
 - 3. Event Multiplicity

Searching for $0\nu\beta\beta$ in ¹³⁶Xe with liquid Xe TPC

¹³⁶Xe is great to study because:

- Good $0\nu\beta\beta$ peak location.
- Easy to enrich.
- We know how to build a detector out of it!

Natural radiation decay rates

A banana ~10 decays/s
A bicycle tire ~0.3 decays/s
1 l outdoor air ~1 decay/min
100 kg of ¹³⁶Xe (2v) ~1 decay/10 min

 $T_{1/2}^{0v} > 10^{25}$ years !!

- →Need:
 - high target mass
 - high exposure
 - o low background rate
 - o good energy resolution

Searching for $0\nu\beta\beta$ in 136 Xe — a phased approach

EXO-200:

- EXO-200 first 100-kg class ββ experiment
- 200kg liquid-Xe TPC with ~80% Xe-136
- Located at the WIPP mine in NM, USA
- Decommissioned in Dec. 2018
- Analyze data from end-of-run calibration campaign
 data will inform the detailed design of nEXO

https://www-project.slac.stanford.edu/exo/

nEXO:

- future 5-ton liquid Xe TPC
- Enriched in Xe-136 at ~90%
- SNOLAB cryopit preferred location by collaboration
- Decision on funding of nEXO expected this summer!

HV FILTER AND FEEDTHROUGH VETO PANELS High purity Heat transfer fluid DOUBLE-WALLED CRYOSTAT FRONT END 25 mm ea ELECTRONICS LXe VESSEL VACUUM PUMPS ~ 1.37 mm LEAD SHIELDING > 25 cm VETO PANELS

EXO-200

Hunting for Majorana neutrinos with nEXO

Energy measurement (EXO-200 data)

Scintillation vs. ionization, ²²⁸Th calibration:

Reconstructed energy, ²²⁸Th calibration:

- Anticorrelation between scintillation and ionization in LXe known since early EXO R&D and now standard in LXe detectors [E.Conti et al. Phys Rev B 68 (2003) 054201]
- Rotation angle determined weekly using ²²⁸Th source data, defined as angle which gives best rotated resolution
- EXO-200 has achieved \sim 1.15% (PRL123,161802(2019)) energy resolution at the ββ decay Q value in Phase II

Position and multiplicity (EXO-200 data)

Allows for background measurement and reduction

Events with > 1 charge cluster: multi-site events (MS) Events with 1 charge cluster: single-site events (SS)

 $0\nu\beta\beta$: ~90% SS γ-rays: ~15% SS at $0\nu\beta\beta$ Q-value

²²⁸Th calibration data, SS:

²²⁸Th calibration data, MS:

EXO-200 Phase-I Results

Precision ¹³⁶Xe 2vββ Measurement

Longest and most precisely measured $2\nu\beta^-\beta^-$ half-life

Final EXO-200 Results

Slide from: M. Jewell September, 2019 TAUP2019, Toyama, Japan

 No statistically significant 0vββ signal observed PRL 123 (2019) 161802 10⁵ Phase I, SS ROI Phase I, SS + Data — Best Fit 12 Onuts/bin 10³ 10² 10 Counts 8 Resid. and the first service of the constraint of the constraints. 10⁵ --- ²³²Th --- Other Bkgds Phase II, SS ROI Phase II, SS Counts/bin 10, 12 238 U - 136 Xe $0\nu\bar{\beta}\beta$ \cdots ¹³⁷ Xe 136 Xe 136 Xe 136Counts Resid. 2450 Energy [keV] 2350 2550 1000 1500 2000 2500

Energy [keV]

Latest EXO-200 Results

Slide from: Gaosong Li Jun 7, 2019 WIN2019, Bari, Italy

Background contribution to $\mathrm{Q}\pm2\sigma$

				Total	I
Phase I	12.6	10.0	8.7	32.3 ± 2.3	39
Phase II	12.0	8.2	9.3	30.9 ± 2.4	26

No statistical significant signal observed

Phase I+II: 234.1 kg·yr ¹³⁶Xe exposure

Limit $T_{1/2}^{0\nu\beta\beta} > 3.5 \times 10^{25} \text{ yr (90\% C.L.)}$

 $\langle m_{gg} \rangle < (93 - 286) \text{ meV}$

Sensitivity 5.0x10²⁵ yr

2012: Phys. Rev. Lett. 109 (2012) 032505

2014: Nature 510 (2014) 229

2018: Phys. Rev. Lett. 120 (2018) 072701

2019: PRL 123 (2019) 161802

EXO-200 decommissioning

Picture: 10 x 10 cm² tile prototype

Tile simulation: arXiv:1907.07512.

The nEXO detector

- Next-generation neutrinoless double beta decay detector.
- 5 t liquid xenon TPC similar to EXO-200.
- SiPM for 175nm scintillation light detection, ~4.5m² SiPM array in LXe.
- Tiles for charge read out in LXe.
- In-cold electronics inside TPC in liquid Xe.
- 3D event reconstruction.
- Combine charge and light readout. Goal $\rightarrow \sigma/E$ of 1% at Q-value.
- 1.5 ktonnes water-Cherenkov detector for muon tagging and shielding.

Charge Readout

Charge will be collected on arrays of strips fabricated onto low background dielectric wafers

(low radioactivity quartz has been identified)

- Self-supporting/no tension
- Built-on electronics (on back)
- Far fewer cables
- Ultimately more reliable, lower noise, lower activity

Max metallization cover with min capacitance

JINST 13, P01006 (2018) arXiv 1710.05109

- 10 x 10cm² Prototype Tile
- Metallized strips on fused silica substrate
- 60 orthogonal channels (30 x 30), 3mm strip pitch
- Strip intersections isolated with SiO₂ layer

Analog SiPMs - baseline solution for nEXO

- High gain (low noise)
- Large manufacturing capabilities
- Single-photon counting possible

nEXO key parameters (arxiv:1805.11142):

Parameter	Value	
Total instrumented area	$\simeq 4.5~\mathrm{m}^2$	
Overall light detection efficiency	$\epsilon_o > 3 \%$	
SiPM PDE (175 nm, normal incidence)	$\epsilon_{PD} > 15 \%$	
Overvoltage	> 3 V	
Dark noise rate	$< 50 \mathrm{Hz}/\mathrm{mm}^2$	
Correlated avalanche rate	< 0.2	

Analog SiPMs - baseline solution for nEXO

- Integrate SiPMs into 'tiles' (~10 x 10 cm²).
- ASIC chip to read out tile.
- Tiles mounted on 'stave' (~20 x 120 cm²).
- Staves mounted inside LXe behind field cage.

ASIC (ZENON) for SiPM readout under design (BNL)

- System on Chip
- 16 channel
- Peak detection
- Analog to digital conversion
- On-chip LDOs

Prototype silicon interposer

Self-shielding in monolithic detectors

The large, monolithic volume of nEXO and high density of liquid xenon (2.9 g/cm₃) is extremely beneficial to the attenuation of gamma rays coming from external materials

nEXO discovery potential

nEXO 10 year discovery potential at $T_{1/2}$ =5.7x10²⁷ yr (3 σ)

J.B. Albert et al., "Sensitivity and Discovery Potential of nEXO to Neutrinoless Double Beta Decay", Phys. Rev. C. 97 065503 (2018), arXiv:1710.05075.

Projected nEXO Sensitivity

J.B. Albert et al. Phys. Rev. C. 97 065503 (June 2018)

0νββ Discovery Potential

 $0\nu\beta\beta$ is the most practical way to test the Majorana nature of neutrinos. An observation of $0\nu\beta\beta$ always implies 'new' physics!

Why neutrino physics is awesome!

University of Alabama, Tuscaloosa AL, USA Lawrence Livermore National Laboratory, Livermore CA, USA M Hughes, P Nakarmi, O Nusair, I Ostrovskiy, A Piepke, AK Soma, V Veeraraghavan JP Brodsky, M Heffner, A House, S Sangiorgio, T Stiegler University of Bern, Switzerland — J-L Vuilleumier University of Massachusetts, Amherst MA, USA University of British Columbia, Vancouver BC, Canada — G Gallina, R Krücken, Y Lan J Bolster, S Feyzbakhsh, KS Kumar, O Njoya, A Pocar, M Tarka, S Thibado Brookhaven National Laboratory, Upton NY, USA McGill University, Montreal QC, Canada M Chiu, G Giacomini , V Radeka E Raguzin, S Rescia, T Tsang S Al Kharusi, T Brunner, D Chen, L Darroch, Y Ito, K Murray, T Nguyen, T Totev University of California, Irvine, Irvine CA, USA — M Moe University of North Carolina, Wilmington, USA — T Daniels California Institute of Technology, Pasadena CA, USA — P Vogel Oak Ridge National Laboratory, Oak Ridge TN, USA — L Fabris, RJ Newby Carleton University, Ottawa ON, Canada Pacific Northwest National Laboratory, Richland, WA, USA I Badhrees, B Chana, D Goeldi, R Gornea, T Koffas, C Vivo-Vilches IJ Arnquist, ML di Vacri, EW Hoppe, JL Orrell, GS Ortega, CT Overman, R Saldanha, R Tsang Colorado School of Mines, Golden CO, USA — K Leach, C Natzke Rensselaer Polytechnic Institute, Troy NY, USA — E Brown, A Fucarino, K Odgers, A Tidball Colorado State University, Fort Collins CO, USA Université de Sherbrooke, QC, Canada — SA Charlebois, D Danovitch, H Dautet, R Fontaine, A Craycraft, D Fairbank, W Fairbank, A Iverson, J Todd, T Wager F Nolet, S Parent, J-F Pratte, T Rossignol, N Roy, G St-Hilaire, J Sylvestre, F Vachon SLAC National Accelerator Laboratory, Menlo Park CA, USA — R Conley, A Dragone, G Haller, J Drexel University, Philadelphia PA, USA — MJ Dolinski, P Gautam, EV Hansen, M Richman, P Weigel Hasi, LJ Kaufman, C Kenney, B Mong, A Odian, M Oriunno, A Pena Perez, PC Rowson, J Segal, K Duke University, Durham NC, USA — PS Barbeau Skarpaas VIII Friedrich-Alexander-University Erlangen, Nuremberg, Germany University of South Dakota, Vermillion SD, USA — T Bhatta, A Larson, R MacLellan G Anton, J Hößl, T Michel, S Schmidt, M Wagenpfeil, W G Wrede, T Ziegler BS Center for Underground Physics, Daejeon, South Korea - DS. IHEP Beijing, People's Republic of China GF Cao, WR Cen, YY Ding, XS Jiang, P Lv, Z Ning, XL Sun, T Tolba, W Wei, LJ Wen, WH Wu, J Zhao Stanford University, Stanford CA, USA ITEP Moscow, Russia — V Belov, A Karelin, A Kuchenkov, V Stekhanov, O Zeldovich R DeVoe, G Gratta, M Jewell, S Kravitz, BG Lenardo, G Li, M Patel, M Weber University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, J Echevers, S Li, L Yang Stony Brook University, SUNY, Stony Brook NY, USA — KS Kumar Indiana University, Bloomington IN, USA — SJ Daugherty, LJ Kaufman, G Visser Laurentian University, Sudbury ON, Canada — E Caden, B Cleveland, TRIUMF, Vancouver BC, Canada — J Dilling, G Gallina, R Krücken Y Lan, F Retière, M Ward Yale University, New Haven CT, USA — A Jamil, Z Li, DC Moore, Q Xia A Der Mesrobian-Kabakian, J Farine, C Licciardi, A Robinson, M Walent, U Wichoski