
Introduction to C++
Programing
Thomas McElroy
May 5th, 2021

Before We Begin….

● $git clone https://github.com/thomasphys/sapcppexamples.git

● $sudo docker run -it -v /home/tmcelroy/sapcppexamples/:/home/physuser/cppexamples:rw

soudk/eieioo2021

** remember to change the path to your sapcppexamples directory.

To follow along and have all the example codes that I have created, please grab the git
repository and startup the docker image with the folder attached.

Introduction:

● Built as an extension to C

● Added classes which are a backbone of C++

● Robust and is used for the backend of most programs.

● Unlike languages like python, c++ has staticly typed variables.

● For the languages commonly used in physics, it is known for its use of pointers.

A few basics (bare with me):

● float - real number with precision of 4 bytes
○ float variable = 3.14;

● double - real number with precision of 8 bytes
○ double variable = 3.14;

● int - integer number of precision of 4 bytes
○ int i = -5;

● unsigned int - positive (and zero) integer.
○ unsigned int = 5;

● char - character variable (“a”,”b”,...)
○ char value = “a”;

○ char* values = “bunch of characters”;

● bool - true or false
○ bool _truevariable = true;

○ bool _falsevarable = false;

Basic variable types:

A few basics (bare with me):

One step beyond standard variables:

● std::string - class that contains characters + some useful functions and operators.
○ std::string variable(“string of characters”);

● std::vector - a dynamically allocated array of a given type.
○ std::vector<double> vectorofdoubles;

○ vectorofdoubles.push_back(3.14);

● Arrays ([]) - a static list of a variable type.
○ double variable[5];

○ Variable[0] = 3.14;

A few basics (bare with me):

Operators:

● Addition - “+”
○ double Sumvariable = number1 + number2;

● Subtraction - “-”
○ float Subvariable = number1 - number2;

● Modulus - “%”
○ Int modulus = 5%3

● Greater and Less Than - <, > , >= , <=
○ bool greater_than = number1 > number2

● Is equal - “==”
○ bool isequal = number1 == number2

● Not equal - “!=”
○ Bool notequal = number1 != number2

● And - “and” (&&)
○ bool both = number1 and number2

● Or - “or” (||)
○ bool either = number1 or number2

Commenting Code

● Commenting code is very important!!!

● Never assume that it is obvious.

● If you have put something into your code that is incorrect that you know you need to come back

and fix, comment it! Even you will forget about it if it compiles without the fix.

● Single line comments can be added with “//”

● Multiple line comments can be added using “/*” to start the comment block and “*/” to end it.

A few basics (bare with me):

● Functions are something that performs a task. Functions are useful for not having to rewrite the same code over and over, just
define a function and call it when needed.

A few basics (bare with me):

● Functions are something that performs a task. Functions are useful for not having to rewrite the same code over and over, just
define a function and call it when needed.

A function that does nothing.

A few basics (bare with me):

● Functions are something that performs a task. Functions are useful for not having to rewrite the same code over and over, just
define a function and call it when needed.

Returns an integer of 6..

A few basics (bare with me):

● Functions are something that performs a task. Functions are useful for not having to rewrite the same code over and over, just
define a function and call it when needed.

Returns an double of 3.14.

A few basics (bare with me):

● Functions are something that performs a task. Functions are useful for not having to rewrite the same code over and over, just
define a function and call it when needed.

Takes in two numbers and
switches their values but this
is lost as soon as the function
exits. The two variables
passed would still have the
same values.

A few basics (bare with me):

● Functions are something that performs a task. Functions are useful for not having to rewrite the same code over and over, just
define a function and call it when needed.

This function truly takes the
variables and switches the
values because we passed the
address of the variable
instead of making a copy of
them. .

A few basics (bare with me):

● Scope is the region of code that a variable is defined.

● In c++ the scope is defined by “{}” brackets.

int variable1 = 0;
{

int variable2 = 1; // variable2 only exists within brackets
 variable1 = variable2; //variable1 exists in newly created brackets
}
//variable 1 exists and equals 1 but variable2 does not exist anymore.

Namespace
● With the large numbers of libraries and codes out there, it is impossible to have unique names for

every function that you might have included in your programs.

● If you need two different math libraries you may end up with many sin and cos functions!

● Defining a namespace allows for functions with the same name to coexist in separate name spaces.

● The standard library namespace “std” is one of the most common namespaces you will see.

Made a namespace and defined some
thing.

Namespace
● With the large numbers of libraries and codes out there, it is impossible to have unique names for

every function that you might have included in your programs.

● If you need two different math libraries you may end up with many sin and cos functions!

● Defining a namespace allows for functions with the same name to coexist in separate name spaces.

● The standard library namespace “std” is one of the most common namespaces you will see.

Can call my variables under the
namespace.

Namespace
● With the large numbers of libraries and codes out there, it is impossible to have unique names for

every function that you might have included in your programs.

● If you need two different math libraries you may end up with many sin and cos functions!

● Defining a namespace allows for functions with the same name to coexist in separate name spaces.

● The standard library namespace “std” is one of the most common namespaces you will see.

I can all all thing from this namespace
into my standard space and drop the
mynamespace::.

Namespace
● With the large numbers of libraries and codes out there, it is impossible to have unique names for

every function that you might have included in your programs.

● If you need two different math libraries you may end up with many sin and cos functions!

● Defining a namespace allows for functions with the same name to coexist in separate name spaces.

● The standard library namespace “std” is one of the most common namespaces you will see.

This can be dangerous is it causes use to
have overlapping names!!!.

Basic syntax in c++:

Our first c++ program.

Our first c++ program.

Include code from other files.
● “<>” usually used for

installed library headers
in standard install location

● “Headerfile.h” used for
our local headers or
headers that we are
including from non
standard location

Basic syntax in c++:

Define main program function,
all programs have a main and
usually are defined as an
integer. The return value tells
the computer if the program
completes properly (returns 0).

Basic syntax in c++:

Use function printf which is
defined in stdio.h, this prints the
passed char* to the terminal.

Basic syntax in c++:

Return a value for the
completion of the main
function.

Basic syntax in c++:

Marks end of main function.

Basic syntax in c++:

Compiling Our first Program:

● C++ code needs to be compiled before it can be run.

● Compilers take the code that we wrote and translates it into machine code.

$$ g++ -o helloworld helloworld.cpp

 $$./helloworld

Compiler program
Name of program to be made.

File with code.

(“./” tells computer that
helloworld is located in our
current directory.)

If else statements

● If statements are used to carry out code under a provided condition.
● They can be paired with following conditions using else if.
● else catches any other condition.

if(number<3.14){
Number += 0.1;

}else if(number > 3.14){
Number -= 0.1;

}else {
//do nothing because number is perfect.

}

Loops

● There are two main loops that we use, for and while

for:

for(“initial condition”,”continue condition”, “end of loop operator”)

 for(int i=0; i<5; ++i) \\ in this case the variable i only exist within {} of for loop.

double number = 0.54;

for(; number1<=3.14; number1 += 0.1)

while:
while(“continue condition”)

while(number1<=3.14)

● In general the loop operations are put within {}; however, for the case of a single line operation, the brackets are not needed.

for(int i=0; i<5; ++i){
printf(“%d\n”,i);

}

for(int i=0; i<5; ++i)
printf(“%d\n”,i);

Loop disruption

● Sometimes you might want to skip over a loop or prematurely stop it entirely.

● The continue command will stop the current iteration of a loop and continue with the next iteration.

● The break command will leave the loop entirely.

int sum = 0;
for(int i=1=0; i<10; ++i){

if(i%2 == 0) continue;
If (i>5) break;
sum += i;

}

Helloworld 2.0

Header for cout
Header for atoi

Add command line inputs
For the program.

Argc is the number of
arguments, the program
name is considered the
first argument.

argv is a pointer to an
array of char*’s for each
input string.

Helloworld 2.0

Check if we don’t have
additional arguments, then
close program by
returning within main.

Helloworld 2.0

Convert the char* in argv
to an integer value. If we
wanted a float we would
use atof.

Helloworld 2.0

Our simple for loop and if
else statement.

Helloworld 2.0

Make a header.

● Headers are ways to split up the code into manageable pieces, improving readability.

● The header must declare the functions and variables but the actual definitions and assignments can be put into

a separate source file.

● In large pieces of code, it is important to insure against defining the same functions more than once. This is

done with the #define call.

Helloworld with a header.

This makes sure that the header is only read in once.
If multiple files in our project needs this header then
then compiler can get confused.

Helloworld with a header.

A simple function that doesn’t rake in any
variables and doesn’t return anything
(void).

Helloworld with a header.

Include our header.

Helloworld with a header.

Call the function.

Compiling

● As projects become more complex, it is less practical to type the compile commands into the

terminal everytime.

● There are several ways to make compiling easier, the two that we will quickly discuss are GnuMake

and CMake.

● Most projects are switching to CMake.

GNU Make

● A very BASH like compiling script.
● White space (indentation is important)
● Just type make while in directory with the Makefile to build.
● Keeps track of files that have been changed since last compile and will skip things that have not changed.

https://www.gnu.org/software/make/manual/html_node/Overview.html

Target name Prerequisites

Tab space

https://devhints.io/makefile

Same compile command but with some short cuts.
$@ inputs the target name and $^ inputs the list of
prerequisites.More references:

https://www.gnu.org/software/make/manual/html_node/Overview.html
https://devhints.io/makefile

CMake

● Now the standard for any new projects.

● You will find that sometimes CMake is only used to make a Makefile, and then GNU Make is used for actual

building.

Make a project

CMake

● Now the standard for any new projects.

● You will find that sometimes CMake is only used to make a Makefile, and then GNU Make is used for actual

building.

Add an executable
program to project.

CMake

● Now the standard for any new projects.

● You will find that sometimes CMake is only used to make a Makefile, and then GNU Make is used for actual

building.

Tell it where to find
headers that are not in
standard locations.

CMake

● Now the standard for any new projects.

● You will find that sometimes CMake is only used to make a Makefile, and then GNU Make is used for actual

building.

Install instructions if
needed.

https://cmake.org/cmake/help/latest/guide/tutorial/index.html
More info on CMake

https://cmake.org/cmake/help/latest/guide/tutorial/index.html

Using CMake

● $mkdir build (make a directory for project to build in)

● $cd build (enter build directory)

● $cmake ../ (build compile instructions, ../ assumes you made the build in project directory)

● $cmake --build ./ (build the project in current directory)

Classes

● Classes are the updated version of structures in C.

● They are a collection of functions and variables.

● Can define operators to act on them in specific ways.

● Classes can inherit from other classes and can be used in place of their base class.

Classes

Class name, if we wanted to
inherit from another class
then we would add “:” then
all parent classes.

Classes

Anything in public space is
callable from outside the
class.

Classes

Anything in private space is
protected and only class
functions can directly
access.

**Can also have protected variables
which are like private variables but
can be accessed by classes that inherit
from parent class.

Classes

Constructor, sets up initial
state of class. Can have
multiple constructors.

Classes

Destructor, how to nicely kill
class (delete pointes).

Classes

Useful function

Classes

Getter and setter for private
variable.

Classes

Public variable

Classes

Private variable

Classes

Source file to define
functions in header.

Libraries

● Groups of useful code can be grouped into a library to make it easier to use.

● With a library, all you need is the library file and the headers to use the code, the source files are not needed.

● There are several types of libraries static, dynamic, shared…

● CMake makes it really easy to build a library and add it to your project.

● Linking a library manually link libcool with “-lcool” for libraries in standard location.

● Use “-L path/to/libcool.so” if not in standard location.

Make library for hello class

Make library

Make library for hello class

Link it to our program.

For libraries that are not built by us, we would either use the the FindPackage
CMake function to find the library and then use the correct library name specified in
it’s config file or we can also manually put in the GNU style -L...

Pointers

● So far we have worked with plain variables; however to make programs more efficient, c++ has the ability

to define variables by their address.

● Pointers allow object to be more easily shared between functions and can speed up processing since the

memory of a large object is not being copied into the function, only the address.

● Pointers are declared using the * character, (yes char* is a pointer).

● Need to remember that when creating a pointer, it creates 2 variables. One is a variable that stores the

address for memory and the other is the actual object itself. When we are done with the object we must

manually clear that memory or else it will persist until the program ends. This can create memory leaks.

Put it together into a program:

Include our hello class.

Put it together into a program:

Define a hello object.

Put it together into a program:

We can directly access our public variable and

functions.

Put it together into a program:

Private variable must be accessed through

public setter.

Put it together into a program:

Declare a pointer to a new hello object.

Put it together into a program:

Now, instead of “.” to access functions and variables,

“->” is used.

Put it together into a program:

We we no longer need the object that our pointer is
pointing to, then we can delete it.

Put it together into a program:

We can access the address of a variable with the &
operator. You can also directly access the object that a
pointer is pointing to using *. (*pointerhello).sayhello();

Vectors

● Vectors are a widely used variable type in physics.
● The vector is actually a template class that can take on any class that we want.
● Essentially allows us to have a variable length array and can even sort the order and rearrange the

contents.

Vectors

● Vectors are a widely used variable type in physics.
● The vector is actually a template class that can take on any class that we want.
● Essentially allows us to have a variable length array and can even sort the order and rearrange the

contents.

Header for vector class.

Vectors

● Vectors are a widely used variable type in physics.
● The vector is actually a template class that can take on any class that we want.
● Essentially allows us to have a variable length array and can even sort the order and rearrange the

contents.

Define a vector of ints, can
put nearly any class in “<>”
and make vector of it.

Vectors

● Vectors are a widely used variable type in physics.
● The vector is actually a template class that can take on any class that we want.
● Essentially allows us to have a variable length array and can even sort the order and rearrange the

contents.

Add elements to the
vector, new elements are
added to the end.

Vectors

● Vectors are a widely used variable type in physics.
● The vector is actually a template class that can take on any class that we want.
● Essentially allows us to have a variable length array and can even sort the order and rearrange the

contents.

Built in sorting function, by
default it puts it in order
from smallest to biggest.
Can be given custom sort
functions.

Vectors

● Vectors are a widely used variable type in physics.
● The vector is actually a template class that can take on any class that we want.
● Essentially allows us to have a variable length array and can even sort the order and rearrange the

contents.

Vector knows how long it is

Vectors

● Vectors are a widely used variable type in physics.
● The vector is actually a template class that can take on any class that we want.
● Essentially allows us to have a variable length array and can even sort the order and rearrange the

contents.

Elements are accessed through
“[i]” like an array.

Vectors

● Vectors are a widely used variable type in physics.
● The vector is actually a template class that can take on any class that we want.
● Essentially allows us to have a variable length array and can even sort the order and rearrange the

contents.

In contrast, once arrays are
made they are fixed length and
do not know their own size, but
find out by looking at size of
array vs size of one element..

Basic text input and output

● One last basic example.

● We often want to read in data from files and save data to a file.

● We more often use ROOT or other higher end libraries for this but sometimes we have/need a simple CSV file.

Basic text input

Define and set input file.

Basic text input

Check that it opened
properly.

Basic text input

Replace commas with white
space.

Basic text input

Read string split by white
space as separate numbers
and put into a double
variable.

Basic text input

Fill vector.

Basic text input

Return vector. (Oops, forgot
to close file)

Basic text output

Receive file name and
vector of doubles.

Basic text output

Open file for output.

Basic text output

Loop over vector and
write to file
separating with
commas.

Basic text output

Close file.

Additional Resources

● Just google it, seriously, I do this hourly.

● https://stackoverflow.com/

● https://en.cppreference.com/w/

https://stackoverflow.com/
https://en.cppreference.com/w/

