
1/35

EIEIOO
Tuesday May 4th, 2021
Jean-François Caron

Introduction to Python

https://xkcd.com/353/

()

2/35

About Jean-François

● Post-doctoral researcher with NEWS-G at Queen’s

● Working on making a neutron beam at our small
accelerator for calibrations (see WNPPC 2021 talk)

● Previously worked on Mu2e tracker module
construction at U.Minnesota, Fermilab, and Houston

● Ph.D. on the SuperB drift chamber (R.I.P.)

● I do gas ionization particle detectors,
instrumentation, electronics, hardware, etc.

● Bicycle repair, bicycle touring, long-distance rides

● Downhill and cross-country skiing

● Roguelike computer games, science fiction books

● Cooking and home fermentation

3/35

What is Python?

● Python defines a programming language.
– Interpreted language, meaning it does not get

compiled to native machine instructions
– Multi-paradigm, meaning you can implement almost

any kind of programming style (e.g. functional, object-
oriented, imperative)

● CPython is the official implementation of the
Python language written in C.
– Since it’s free & open-source, there are alternative

implementations: PyPy, Jython, MicroPython...
– Comes built-in as a system tool in Linux and macOS.

4/35

More About Python

● It is easy to add non-Python extensions to
Python. E.g. numpy is a numerical matrix
library that is written in FORTRAN.

● This makes Python a great “glue language” to
combine different bits of software.

● It also lets you use systems written in a more-
difficult-to-learn high-efficiency language (e.g.
C++, FORTRAN) in a friendlier setting.

● Python itself is a capable language, but large
applications in pure python can be slow.

5/35

Python Versions

1) Use python 3.x

2) Use python 3.x

3) The python that comes with current Ubuntu is
3.x. macOS currently has 2.x and 3.x.

4) The two are mildly incompatible.

5) You may have to run python3 instead of just
python at the command line.

6) When in doubt, use python -V and python3-V
 to test the version.

6/35

Python Interpreter

● When you run python in bash, you enter a python
interpreter. A.k.a. python prompt, python shell.

● This is very similar to the bash shell, but it’s
oriented towards programming, whereas bash is
oriented around files and running other programs.

● Type exit() and press enter, or Ctrl+D to return to
bash.

Bash

Python prompt
Back to bash

Note I had to use python3
to get the right version.

Tip: you can type the partial name of a command or file then
press tab and python will try to complete the name.
You can also press the up-arrow to repeat earlier commands.

7/35

Python as an Engine

You can write python programs in a text file,
conventionally with .py extension. Then

python my_program.py

will run the program and exit.

Adding -i to the command will run the program
then leave you at the interpreter.

A good workflow is to use -i to experiment in
the interpreter before adding new code into
your program in a text file.

If you meant to display something
on a window, like a graph, then it
will disappear when python exits!

8/35

Basic Math

Python integers are “BigNum”, meaning there is no maximum/rollover.
Python integers will just use more memory as they get really big.

Python numbers behave as you might expect from a
mathematical perspective.
It is less “computer-y” than in other languages like C.

Dividing two integers does not truncate
the decimal places, it returns a float.

You can still do “integer division” with //.

* / + - do what you would expect.
// does integer division, % does modulo
** does exponentiation (not ^)
+=, -=, *= etc are “augmented assignment”:
a += b is the same as a = a+b.

You can even do square
roots with non-integer
exponents and get
complex numbers.

Floating point numbers are
valid IEEE 754 floats, like
every other language out
there, with all their quirks.

real part + jmaginary part

9/35

Python Typing

● Dynamic typing means you don’t have to
declare variables ahead of time, and a python
name isn’t restricted to one type.

● Strong typing means you have to explicitly
transform variables into different types.
e.g. 2+’3’ won’t work (but 2*’3’ works...)

● Everything is an object in python.
● Duck typing means you can legally pass any

object to any function.
(If it quacks like a duck, it’s a duck)

10/35

Python Strings

Python strings are built-in and
have lots of convenient “methods”.

<tab><tab>

Immutable means all string operations return a
copy with the modification.
b itself is unchanged here, we just got a new
string with the capitalization.

Ordered means you can “index” into a
string with square brackets and an integer.
More indexing syntax is shown later.

Note that you can’t change
an element inside the string.

You can make strings with ‘single quotes’, “double
quotes”, and even ‘’’triple’’’ and “””sextuple”””
quotes, but these are all equivalent (almost).

There is no bare character type in python, a single
character is just a string of length 1.

Strings are:
● ordered
● homogenous
● immutable

11/35

Exercise

1) Write your full name as a string.

2) Get the length of this string.

3) Use the string’s .split method.

4) What is returned?

5) Type help(stringname.split)
● These are like manpages for python.
● The help command is great for functions (and modules...)
● Not so great for other objects: e.g. try help(str).

12/35

Basic Containers: Lists

You can also put any sequence into the list() function.

Created by putting
comma-separated
sequence in
square brackets.

Lists are:
● ordered
● heterogenous
● mutable
● the most common

container in python.

<tab><tab>

Lists, like most python objects, have a bunch of convenient and obvious built-in methods.

Since lists are mutable, these modify the list itself.

13/35

Basic Containers: Tuples

Tuples are:
● ordered
● heterogenous
● immutable
● the default container

in python.

You can also put a sequence into the tuple() function.

Created by putting
comma-separated
sequence in round
brackets.

<tab><tab>

Tuples are simpler than lists, they only have two methods.

14/35

Basic Containers:
Dictionaries

Dicts are:
● unordered
● heterogenous
● mutable
● underutilized!

Dicts are created with curly brackets and take key:value pairs.

Keys must be immutable. You can use
strings and tuples as keys, but NOT lists!

Values can be any object.

You can dynamically add new entries.

Entries are accessed with the same
square-bracket syntax as tuples and lists.

A lot of python internal mechanics are
implemented using dicts e.g. globals()

my_dict[0] is the exit function, so calling it with () exits.

15/35

Exercise

● Find the length of the string with your full name. (use len)
● What are elements [0], [5], [-1], and [-5] of your name?
● What do you get when you ask for element [1:8]? What

about [1:8:2]?
● Take the result of using .split() on the string with your

full name.
● Create a dict with keys “first” and “last” (and other

parts…) and put the parts of your name in it.
● Print the dictionary.

16/35

Exercise (2)

Indexes start from 0.

This syntax defines a “stride” of 2.
The stride could even be negative
to reverse a sequence.

Negative indexes count
from the back end.

This defines a range from (1,8].

17/35

Flow Control

In python, indentation signifies a block or scope.

Flow-control structures like if, elif, else, while, for, etc define a new block.

● Indentation can be either spaces or tabs, but please only use spaces.
● Typically 4 spaces is used, I like using 2.
● It has to be consistent within the structure, but please be consistent across the

whole work.
● Blocks-within-blocks just indent further.
● You can set most text editors to visibly show “whitespace” to make it easier to see.

There are 2
spaces here.

New blocks always
start with a colon:

==, != , <>, >,<=, etc
are comparisons
There are also binary logic
operations, notably ^ is
exclusive or, don’t confuse
it for exponentiation!

18/35

Loops

while loops will
repeat the code in
the block until the
condition is false.

for loops will
iterate over any
sequence (tuple,
list, str, dict, etc).

n.b.: since dicts are unordered, their
iteration order is not guaranteed.

continue will skip to the next loop iteration.
break will break out of the innermost loop.
else on a loop starts a new block that executes
 after the loop finishes normally.

Because of duck-typing, many other
things are considered sequences,
e.g. lines in a text file.

Python has no built-in
“do-while” loop, but
you can make one
using if and while.

this is WEIRD!

19/35

Complex Loop Example

● The range(a,b) function generates a
list of integers from (a,b].

● Recall % is the modulo operator.
● This else belongs to the inner for

loop, it executes if the inner loop
finishes normally (i.e. without break).

This snippet of code:
● Generates integers n from 2 to 10.
● For each n, generates integers x from 2 to n.
● If x divides n, it prints a message and breaks the inner loop.
● If no x divides n, then n is prime!

Triple-indentation

20/35

User-Defined Functions

● Here we see multiple-assignment.
● This is equivalent to a = 0 and b = 1 on two lines.
● This is not the same as the two assignments on two

lines; the assignment happens “at the same time”.
● You can use this to swap two variables without a

temporary: x, y = y, x
● You can also use this to automatically “unpack” a

sequence into individual variables: i, j = range(2)

The keyword def starts a new block.
Triple or sextuple-quotes are
used as documentation
“docstrings”. So help(fib) gives:

The return statement is used to send something out when the function is done.
Even without return, functions return the special value None.

Note: variables defined in a
function are local to that function.
a and b don’t exist outside of fib.

21/35

Exercise

● Write a function to calculate and return N!
(factorial).

● Tip: You can use recursion (a function that
calls itself), but you don’t have to.

22/35

Possible Solutions

Recursive Non-recursive

Recall this “augmented
assignment” is equivalent to
res = res*i

23/35

Modules

● Python is “batteries included”, i.e. a lot more
features are included compared to other
languages.

● Most of these features are in standard modules.
● There are also 3rd-party non-standard modules

(e.g. numpy, PyROOT) and you can write your
own modules.

● In many cases the solution to a python problem
is just finding the right module to do what you
want.

24/35

Importing Modules

● import modulename will import the module.
● If it’s not a standard module, there must be a

matching modulename.py file either in the
directory where you started python, or in the list of
directories in PYTHONPATH.
– At the bash prompt, do echo $PYTHONPATH or

import sys; print(sys.path) in python to see the list.
● Please put all your imports at the top of your

programs, with one module imported per line.
● You may see from modulename import * in

examples - don’t do this, it’s bad style.

25/35

Module Example &
Namespaces

<tab><tab>

● Python has the concept of namespaces. A namespace is the “context” in which a
name (like a variable or function name) has meaning.

● To access an object inside a namespace, you do namespace.objectname
● This allows you and module writers to use names without worrying about giving

two different objects the same name.
● You can explicitly make new names to “break out”: e.g. sin = math.sin
● For frequently-used names, “breaking out” can reduce the amount of typing

required (and a tiny performance boost).
● “Breaking out” makes it harder to understand your code! I almost never do it.
● from modulename import * “breaks out” ALL the names from the module!

26/35

My Favourite Modules

I used ag --python “import” to get a big list of all the places where
something is imported in my own code.
● ROOT: interaction with ROOT, graphing
● sys: python interpreter internals (e.g. sys.path, sys.argv, sys.version)
● os: interacting with the operating system (os.path, os.mkdir)
● numpy: matrix algebra and numerical computing
● time: timestamps and measuring time
● math: special functions and math
● subprocess: run programs in parallel, launch external programs
● csv: handling comma-separated values files
● random: random number generation
● serial: reading/writing to the serial port (for Arduinos)
● pygame: easily make simple 2D games!

Built-in
3rd-party

27/35

Let’s Make A Module!

● Typing functions into the interpreter is tedious.
● Type into a text editor instead!
● Make a directory called “python_tutorial” on

your computer and mount it in Docker.
sudo docker run -it -v /path/to/python_tutorial/:/home/physuser/python_tutorial:rw soudk/eieioo2021

● Open a new file called “fact.py” with your
favourite GUI text editor (I suggest gedit).

● Copy & paste your factorial function from your
terminal into the file (without the >>> and …).

● Save your module! (easy newbie mistake)

28/35

Check/change your indentation settings
here. “Use Spaces” makes it so the tab
key puts in the right number of spaces.
To make this permanent, go to the
Hamburger menu and “Preferences”.

Note: the * means I haven’t
saved my file yet! The file
on disk probably empty!

Here I show the
contents of the file
in the terminal.

Here I import my module and use the
functions inside.

This worked because fact.py is in the same
directory where I launched python.

Note that I have to use the namespace!

Tip: Install the gedit-plugin-draw-spaces
Ubuntu package to allow gedit to show
visible whitespace.

29/35

Let’s Write a Script!

● Create a new file called script.py in the
same directory.

● In the script, import the module, calculate
some factorials and print them.

● At the bash prompt, run the program with:
python3 script.py

● Now run the script with
python3 -i script.py

30/35

Final Exercise/Homework

● In your script, import the time and math built-in
modules.

● Use the time.time() function to calculate how
much time it takes to run your factorial function.

● Do the same thing with the math.factorial
function.

● Bonus: Extend the test to time a large number of
calculations, or test different arguments to the
factorial function.

31/35

IPython

● The default python shell is somewhat minimal.
● IPython is a replacement shell that adds a

bunch of features. It’s implicitly used in Jupyter
Notebooks.
– Auto-identation
– Up-arrow recalls entire blocks instead of single lines
– Syntax highlighting as you type
– Special ?foo syntax to get help (e.g. ?math.sin)
– Special %magic convenient commands (e.g. change

directory without leaving python).

32/35

IPython Magic Example

33/35

Important Topics Missing

● Default arguments and keyword arguments
to functions

● Exception handling with try/except
● List comprehensions and generators
● Basic file input & output, csv files
● Numpy and numerical arrays
● PyROOT (Thursday’s tutorial at 17h00 EST)
● Classes and inheritance

34/35

Getting Help

● The official tutorial is quite good:
https://docs.python.org/3/tutorial/index.html.

● Use the library and language references on www.python.org.
● Don’t forget about the help command inside python.
● Search for solutions on the internet!
● Ask in your research group.
● Go to FreeNode on IRC.

– Go to https://webchat.freenode.net/ or use an IRC client program to
connect to chat.freenode.net

– You will need to register a (free) FreeNode account to join #python
● Learn to ask questions concisely, specify python 3.
● #python is very beginner-friendly.
● Don’t take it personally if people tell you to RTFM.

Beware of old python 2.x examples!
But the main difference is changing
● print foo, bar to
● print(foo, bar)

https://docs.python.org/3/tutorial/index.html
http://www.python.org/
https://webchat.freenode.net/

35/35

PyHEP 2021 Plug

● PyHEP (Python in High-Energy Physics)
● Lots of topics about 3rd-party modules for

statistics, graphing, hardware interfaces, etc.
● https://indico.cern.ch/event/1019958/
● Registration is open until July 2nd.
● No workshop fees
● 572 participants when I checked.
● I attended in 2020 and it was great!

https://indico.cern.ch/event/1019958/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

