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Preferred candidate so far was
Weakly Interacting Massive Particle (WIMP)

 Weak scale mass: O(1 ~ 10°) x proton mass

"« Weak interaction with the SM particles:
about < 10-12 (in cross section) smaller than EM

Byproduct of many BSM theories
for resolving the hierarchy problem




What is Dark Matter?

What particle is dark matter? « Mass?

e (Non-gravitational) Interactions”

@M - S@-——-——i& \) Observation

(1) Amount of DM

WIM? strongly constrained’

Preferred candi 12:: U WIMP (old)

VIP)

proton mass

COSINE- 100

rticles:
smaller than EM

\

\
Neutrino !

\
floor

—
| \I_ rf-_l——rl | |

2 3 5 10 20 30 50 100

~» theories

WIMP mass [GeV/c?] Schumann,

tor resolving the 190303026 1y problem




What is Dark Matter?

What particle is dark matter? « Mass?

* (Non-gravitational) Interactions?

(M S)“""b () Observation

(1) Amount of DM

WIM? strongly constrained’

Preferred candic =
Weak 1074

VIP)

proton mass

s 3
S

rticles:
smaller than EM

Cross Section [cm?]
o
|

~» theories

WIMP mass [GeV/cz] Schumann,

| for resolving the 1903.03026 1y problem




Dark world beyond WIMP
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« WIMP: a single species of particles with thermal relic via freeze-out

« Mass in between 1 GeV = m, = 100 TeV roughly



Dark world beyond WIMP

Heavy DM
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Dark world beyond WIMP

ODM-SM
A
Dark world Beymfwf WIMP
_{1pDo
10-10 pb
Multi-cpmponent -
“ ———
1022V ueV. meV eV keV MeV GeV  TeV  PeV
» Dark sector: multiple species of particles? Symmetries? Rg's
L
e LT
* Non-trivial structures give unigue signals: e.g., iDM Leptons

Smith, Weiner, PRD 2001



Sub-dominant component is hidden?

* Conventionally, sub-dominant DM components are thought to be
hidden in direct/indirect detection experiments: observables o< fraction

e Particularly useful in the scenarios where the dominant relic
communicates with the SM sector through the sub-dominant relic.
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Sub-dominant component is hidden?

* Conventionally, sub-dominant DM components are thought to be
hidden in direct/indirect detection experiments: observables o< fraction

e Particularly useful in the scenarios where the dominant relic
communicates with the SM sector through the sub-dominant relic.

e (Question is how the amount of the sub-dominant relic is determined.

Colliders

e.g., DM-SM coupling

A

Amount-1 = Cross section
fraction-?
SM

(Direct debection )

r Observable = fraction x cross section
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Structure of y1y1- SM

y0: heavy (dominant), y1: light (subdominant)
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Structure of y1y1- SM
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Structure of y1y1- SM

y0: heavy (dominant), y1: light (subdominant)

Assisted regime ‘AUQMZRL\‘. ULy /2" - Standard regime
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Structure of y1y1- SM

Assisted regime
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Structure of y1y1- SM

After the heavy component yo freezes-out

@xl ~ ~Aa(@) [Yx21 - (Y;? (x))z - Yo (m)]

dx x

NoX0 —» X1 X1 for a while

QXl

OpM ot

where  Yast. (z) = \/ <aovrel>Yxo (z) 1

<01Urel>
During the decoupling, assume y1 15 tn kinetic equilibrivm with the SM

\_ (6,01 < 0,1-5M) j

o If Yast. IS negligible, y1 freezes out at T ~ m+1/20 as usual.

o |f the fraction of y1 is very small, i.e., r1 <« 1, however, departure from

thermal equilibrium is delayed and Yast. is non-negligible compared to Y

Kamada, Kim, Park, SS, arXiv: 2111.06808
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Structure of y1y1- SM

Assisted regime
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e Forafixedri« 1, y1y1- SM should be even larger to deplete the

contribution by the residual annihilation yoyo - x1x1 (Yast.).

e Wefind {(o1v) x 1/r] ,1/r3 for s-wave and p-wave, respectively.

Kamada, Kim, Park, SS, arXiv: 2111.06808



Structure of y1y1- SM

Assisted regime
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(o1v) = <UX1X1—>SM
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e Forafixedri« 1, y1y1- SM should be even larger to deplete the

contribution by the residual annihilation yoyo - x1x1 (Yast.).

e Wefind {(o1v) x 1/r] ,1/r3 for s-wave and p-wave, respectively.
\___.9 observables o< n3 (o1v) = No ri suppression!

Kamada, Kim, Park, SS, arXiv: 2111.06808



Effects of y1 to various observables

Sub-component DM can be not hidden and affect

 Big Bang Nucleosynthesis: photo-dissociation of light elements
primordial elements if freeze-out T = T, dec

« (Cosmic microwave background: y1y1 = SM after the last scattering,

Nert constraints if freeze-out T = T, dec

e Diffuse X-rays and y-rays in the Milky Way

e Direct detection if the crossing symmetry is effective (severer)

observable o< 1y, 0



Effects of y1 to various observables

Unprecedented role of a sub-dominant DM component

For s-wave dominant y1y1- SM SM, the nominal constraints directly

1
apply because n (o1vrer)s ~ 17 - 5 =nor ! s-wave not preferred!
1

(preconception: ny, (o1vrel)standara ~ 71 IS NOt true in the assisted regime.)

For p-wave dominant y1y1- SM SM, the nominal constraints can be

weaken by velocity suppression but its effect can be small since
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Unprecedented role of a sub-dominant DM component

For s-wave dominant y1y1- SM SM, the nominal constraints directly

1
apply because n (o1vrer)s ~ 17 - 5 =nor ! s-wave not preferred!
1

(preconception: ny, (o1vrel)standara ~ 71 IS NOt true in the assisted regime.)

For p-wave dominant y1y1- SM SM, the nominal constraints can be

weaken by velocity suppression but its effect can be small since

1
2 2 2 __
ny, (01Vrel) ~ 77 - 3 VT =
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X1~ X
self-interaction

Sensttive to the evolution of the temperature of yq

tn the early Universe



Self-heating of 1

o Self-interacting DM models have been proposed actively recently.

o Self-interactions always exist. The question is how efficient they can
transfer energy long after the freeze-out (not effective for WIMP).

o Self-interaction of a subdominant DM y1 can be large for the O(1) dark
sector coupling.
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Self-heating of y+

o Self-interacting DM models have been proposed actively recently.

o Self-interactions always exist. The question is how efficient they can
transfer energy long after the freeze-out (not effective for WIMP).

o Self-interaction of a subdominant DM y1 can be large for the O(1) dark
sector coupling.

Boosted (energetic) i Ralic (cold) 1
X1 4 X1

X0

Self-heating

01{ A X1

X0 X1

Kamada, Kim, Kim,
Sekiguchi, PRL 2018

Vogelsberger, Zavala,
Schutz, Slatyer, MNRAS 2018

Chu, Garcia-Cely, JCAP 2018



Temperature evolution of y-
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e |f self-heating is efficient even after the kinetic decoupling, the
temperature evolution of y1 makes it behave like a radiation.

* The self-heating lasts as r1 (hence n1) & the self-interaction are sizable.

e The temperature increases rapidly as 1/r1 (large y1 - SM cross section).



Temperature evolution of y1
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Temperature evolution of y-
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e The photo-dissociation bounds become severer.

e Forri =z 0.07, the self-heating epoch can persist even until the matter-

radiation equality.



Temperature evolution of y-
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e The photo-dissociation bounds become severer.

e Forri =z 0.07, the self-heating epoch can persist even until the matter-

radiation equality.
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New bounds due to selt-heating

Kamada, Kim, Park, SS, arXiv: 2111.06808
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* WDM constraint enters when r1 = 0.07 even for m,+ ~ 40 MeV,

* Direct detection bounds get weaken since n,1 inside our MW
decreases due to the kinetic energy of y+

* % reference values of r1 in the temperature evolution (previous slide)



Complementary searches

Light DM can be produced in accelerators with high intensities!
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Complementary searches

Light DM can be produced in accelerators with high intensities!
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Complementary searches

Light DM can be produced in accelerators with high intensities!
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Conclusions

A sub-component DM ( y1) can severely affect the cosmo/astro

observables (y1 - SM: p-wave preferred!).

Self-heating naturally arises in a wide range of parameter space and
changes the evolution of the temperature of y1 after the freeze-out.

The temperature evolution affects the structure formation of y1:

a sub-GeV mass Warm Dark Matter (heavy WDM) for r1 = 0.07!
— This is true even when y1 is a dominant component DM.

Complementary searches in accelerators can give hints on the dark
sector details (disfavor r1 = 0.07 for a reference model).



Bakup

When y1y1- SM is dominated by s-wave
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o CMB kills almost everywhere.




Bakup

When y1y1- SM is dominated by s-wave
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Backup

When y1y1- SM is dominated by p-wave
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 In the assisted regime, the kinetic decoupling can occur after the
freeze-out of y1y1 — etre: photo-dissociation if 100 eV = Tkg = 10 keV

after BBN.



Backup

When y1y1- SM is dominated by p-wave
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 In the assisted regime, the kinetic decoupling can occur after the
freeze-out of y1y1 — etre: photo-dissociation if 100 eV = Tkg = 10 keV

after BBN.
Kamada, Kim, Park, SS, arXiv: 2111.06808
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Backup

When y1y1- SM is dominated by s-wave

10_7EIIII L
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107 ¢ Kamada, Kim, Park, 8S, arXiv: 2111.06808

i ) R B T
10—10; C Y Thin blue line: ignoring Yasf;

: S N S L ......:

10! 102 103

v = (my/T)

e Forri « 1, v,, islifted-up by Yast. (follows it when T = m+/30).

e The annihilation cross section y1y1 = SM is enhanced by 1/r1 2.

1\° 2 1 /3.
(01vrel), =~ 4.7 X 107 **cm?® /s (0_) (mXI/mXO) (\/9 )
Zfo,0

T1 0.6 g«S

<O-1Urel> =~ (Olvrel)Q + (Ulvrel)pvfel



Backup

When y1y1- SM is dominated by s-wave
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v = (my/T)

e Forri « 1, v,, islifted-up by Yast. (follows it when T = m+/30).

e The annihilation cross section y1y1 = SM is enhanced by 1/r1 2.

1\° 2 1 /3.
(01vrel), =~ 4.7 X 107 **cm?® /s (0_) (mXI/mXO) (\/9 )
Zfo,0

T1 0.6 g«S

<O-1Urel> =~ (Olvrel)Q + (Ulvrel)pvfel



Backup

When y1y1- SM is dominated by p-wave Safe from

1077 — constraints?
C r=20.1 ]
: o T ég(l)wl\gsfv 3 Assisted regime
108 e E
/N E YXO ;
\g/ r Yast.
NS 107 Kamada, Kim, Park, S8S, arXiv: 2111.06808
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e Forr « 1, Yv,, is lifted-up even more by Yast. (until T ~ m1/80).

* The annihilation cross section y1y1 = SMincreases as 1/r13 so the
process can be also sensitive to various observables.

7\ 4 4 3 4 \/ ?
B 0.1 gxs 9+
i ~ 49 % 10-24 em® /s ( C ) (mx1/mxo> ( ) ( ) ( )
(019re1); /5 \ 035 0.6 1) \VG/) 4 \Gxs )y,

(Yast- o YXI)/Yast. =c




