

Status, performance and results of the Large-Sized Telescope prototype for the Cherenkov Telescope Array

Daniel Kerszberg (IFAE-BIST) for the CTA LST project

The LSTs of CTA

- CTA will consist of 2 sites:
 - La Palma, Spain.
 - Paranal, Chile.
- And 3 telescopes types:
 - SST: Small-Sized Telescope
 - MST: Medium-Sized
 Telescope
 - LST: Large-Sized Telescope
- The LSTs are designed to cover the lowest energies.

LST design

LST characteristics

Optics:

- Parabolic primary mirror of 23 m diameter and 28 m focal length.
- Primary dish made of 198 hexagonal segments.
- Effective mirror area is 368 m².

Focal plane:

- Made of 1855 PMTs.
- Pixel field of view of 0.1°.
- Total field of view of 4.5°.

LST characteristics

• Structure:

- Alt-az mount.
- Maximum time for repositioning is
 20 seconds.
- Total weight of the telescope is
 ~120 tons.

LST-1 status

- First telescope built on the CTA-North site (La Palma, Spain).
- Inaugurated end of 2018.
- Commissioning trough/despite pandemic, volcanic eruption, electronic components and shipment crises...
- Taking scientific data since January 2020.
 - More than 800 hours of data accumulated already.
 - → Performance evaluation and first science results!

LST-1 performance: optical efficiency

- "Optical efficiency" includes both mirror reflectivity and mirror focusing.
- It's stable from November 2020 to March 2022:
 - maximum spread of 8%.
 - much of the variation is due to measurement uncertainties and episodes of dust deposition.
- No long-term effect of volcano: rain cleaned mirrors of volcanic ash.

LST-1 performance: effective area, angular and spectral resolution

- Here:
 - zenith angle = 10deg
 - gamma-ray efficiency = 60%(due to gammaness cut)
- Effective area >10³ m² down to ~20 GeV.
- LST-1 is a single telescope so one cannot expect a great angular or spectral resolution. Still they are competitive down to 100 GeV.

LST-1 performance: sensitivity

- Consistent sensitivity for source-dependent and sourceindependent analyses.
- Extending down to ~50 GeV.

Crab Nebula spectrum

- 34.2 hours of effective time
- Gamma-ray efficiency: 70% from gammaness cut and 70% from θ² cut
- Error bars are only statistical.
- Systematic errors: blue lines correspond to the effect of ±1% background.
- Consistent with MAGIC and Fermi-LAT.
- Lowest data point at 25 GeV!

Crab pulsar phaseogram

- Data from Nov 2020 to March 2022
- Data selection: cut in rate

 + no technical issues (more strict than previous analyses)
- Highly significant detection down to few tens of GeV.
- P1/P2 ratio tends to 1 at low energies

Science results with the LST-1

- Performance paper to be published soon, including results shown here and more.
- ~800 hours of data taken since 2020 on many sources:
 - RS Ophiuchi
 Talk by Y. Kobayashi (Thu. 11th at 16:50)
 - LHAASO J2108+5157
 Talk by J. Jurysek (Wed. 10th at 16:10)
 - AGNs: BL Lac (including a strong flare in 2021!), Mrk 421 and 501, 1ES 1959+650, PG 1553+113...
 - Transients

Talk by D. Green (Tue. 9th at 15:50)

Several publications planned on these observations.

Next 3 LSTs in CTA-North

Next 3 LSTs in CTA-North

Next 3 LSTs in CTA-North

- Almost all parts manufactured and stored, ready for installation.
 - Most of them already in La Palma.
 - Few parts missing, e.g. mirror actuators.
 - LST-2 camera already integrated (arrived in the Canaries in July of this year), LST-3 camera currently being integrated, LST-4 camera to follow end of 2022/beginning of 2023.
- Next steps on site:
 - Environmental study approved end of June, permit for construction coming soon.
 - Civil work about to start (time scale of a few weeks).

LST2-4 schedule in CTA-North

+ a few weeks of delay due to construction permit.

LSTs in CTA-South

- LSTs allow the detection of the lowest energies, in CTA-South especially relevant for:
 - GRBs, AGN flares, transients.
 - Dark Matter searches.
- No LSTs included in the "alpha" configuration but our Italian colleagues (INAF+INFN) have secured fundings for 2 LSTs.
 - Manufacturing of the telescope parts must happen before the end of 2025.
- The goal is still to build all 4 telescopes!

Conclusions

- The prototype telescope LST-1 was installed on the CTA-North site (La Palma, Spain) in 2018.
 - Performances of the telescope within requirements.
 - Taking scientific data since 2020.
 - First papers, starting with performance paper, to be published soon.
- Construction and commissioning of remaining LSTs in CTA-North (LST-2 to LST-4) should be complete by 2025.
 - Production of all parts almost completed, assembly of all the cameras to be completed by beginning of 2023.
 - Civil works to start in the next weeks.
- Funding secured for 2 LSTs in CTA-South.