Latest results from CUORE

Vivek Singh University of California Berkeley, US

On behalf of the CUORE collaboration

> 110 scientists spanning 27 institutions in 4 countries

CAL POLY

Neutrinoless Double Beta Decay

- ▶ 2nd order weak interaction
- Normal beta decay suppressed by Q value or Jπ

Processes explained by the Standard Model

- Lepton number not conserved
- Occurs if neutrinos have mass and are their own antiparticle

Experimental Signature

Sum energy of emitted electrons: Peak at Q value of the decay.

Sensitivity of the search

$$T_{1/2}^{0\nu}(n_{\sigma}) = \frac{\ln 2}{n_{\sigma}} \frac{N_A \cdot i \cdot \epsilon}{A} f(\Delta E) \sqrt{\frac{M \cdot t}{B \cdot \Delta E}}$$

- High $Q_{\beta\beta}$ (less $\gamma\beta$ background and large phase space factor)
- High isotopic abundance (or enrichment)

- Long exposure $(M \cdot t)$
- Good energy resolution
- Low background rate

Implications

Past and present (~10 kg)

Present and near future (~100 kg)

Future (~1000 kg)

Dreams (~10000+ kg?)

- Neutrinos are Majorana fermions.
 - Physics beyond standard model.
- Constraints on absolute mass scale.
 - Probes the mass hierarchy of the neutrinos.
- Constraints on CP violating phases?

CUORE

- Search for 0vββ in ¹³⁰Te at LNGS, Italy
- 3600 m.w.e of rock to shield from cosmic rays

CUORE

- $Q_{\beta\beta} = 2527.515 \text{ keV}$
- ▶ Isotopic mass of ¹³0Te: 206 kg
- ▶ 988 TeO₂ crystals (arranged in 19 towers with 13 floors each)
- Massive thermal calorimeters operated at ~10 mK
 - $T_{1/2}$ (90% C.L.) > 9 x 10²⁵ y 5 yrs of live time; <m_{ββ}> ~ 45 - 210 meV.

Detector Principle: Thermal Calorimeters

Vivek Singh, UC Berkeley

- 750 g (5x5x5 cm³) crystal
- $^{\bullet}$ \triangle T ~ 100 μ K for 1 MeV energy deposit
- NTD-Ge thermistor read out
 - R(T) ~ R₀ exp [$(T_0/T)^{1/2}$] (large sensitivity at low T)
- Energy response calibrated using known gamma sources
- Note:
 - Signal → thermal channel only
 - No active background rejection

Source = Detector

- Electron events mostly contained in the bulk: Large detection efficiency.
- The calorimeter cannot discriminate background from signal events easily.

Cryogenics 102, 9 (2019)

CUORE Cryostat

- 6 stages and nested vessels
- Cooling through pulse tubes and dilution unit
- ~10 mK working temperature
- 15 tonnes of materials below 4 K and 3 tonnes below 50 mK
- Material selection with radio-purity constraints
- Vibration isolation and noise cancellation

- 984/988 operational channels
- Operating since 2017
 - 2019: duty cycle improved from 35.8% to 93%
- Dataset: 1-2 months of physics runs flanked by a week of calibration on either end.
- 15 datasets in the recently published 1t.y (TeO₂)
- Ongoing data taking

Analysis Workflow: Amplitude Estimation

$$P(t) = H S(t) + N(t)$$

OF Transfer Function

$$H(\omega) = \frac{S^*(\omega)}{N(\omega)} e^{-i\omega t_M}$$

- Average signal obtained from selected calibration event.
- Trigger threshold ~ 10keV, depending on the channel.

Analysis Workflow: Energy calibration

- Calibration with ²³²Th and ⁶⁰Co external sources → 511, 1173, 1332, 2615 keV energy lines
- Model of detector response on calibration data
- Fit of the 2615 keV line and extrapolation of the resolution to the ROI \rightarrow (7.8±0.5) keV at $Q_{\beta\beta}$

Vivek Singh, UC Berkeley

TeVPA, Kingston, ON

Analysis Workflow: Thermal gain correction

- Being a thermal detector the baseline can drift due to instabilities in temperature.
- We correct for the thermal gain instabilities using the amplitude of a fixed-energy reference pulse (typically, heater but can be 2615 keV pulse too)

Analysis Workflow: Coincidences and Pulse Shape Discrimination

- Containment efficiency from MC: ~88% of $0\nu\beta\beta$ events in one crystal (M1)
- M2 mostly from gammas, muons, noise
- Assign multiplicity and a total energy to each group of events occurring at the same time

- Principal component analysis used for pulse shape discrimination
- Cut on the reconstructed error between single pulses and principal components of average pulse in each channel-dataset

Analysis Workflow: Physics Spectrum

Vivek Singh, UC Berkeley TeVPA, Kingston, ON

$0\nu\beta\beta$ Analysis Parameters

Parameter	Value	
Number of datasets	15	
TeO ₂ exposure	1,038.4 kg yr	
¹³⁰ Te exposure	288.8 kg yr	
FWHM at 2,615 keV in calibration data	7.78(3) keV	
FWHM at $Q_{\beta\beta}$ in physics data	7.8(5) keV	
Total analysis efficiency (data)	92.4(2)%	
Reconstruction efficiency	96.418(2)%	
Anticoincidence efficiency	99.3(1)%	
PSD efficiency	96.4(2)%	
Containment efficiency (Monte Carlo)	88.35(9)%30	
The resolution and efficiencies are exposure-weighted a	verage values.	

Fairly constant background rate across all datasets

$0\nu\beta\beta$ Results

Bayesian limit at 90% C.I. $T_{1/2}^{0\nu} > 2.2 \times 10^{25} \,\mathrm{yr}$

- Analysis with Bayesian Analysis Toolkit (BAT)
- Free parameters:
 - $\Gamma^{0\nu}$ rate
 - ► 60Co peak rate
 - Background rate for each dataset and shared linear slope
- Median 90% exclusion sensitivity $T_{1/2}^{0\nu}=2.8\times 10^{25}\,\mathrm{yr}$
- Best fit value $\Gamma^{0\nu} = (0.9 \pm 1.4) \times 10^{-26} \, \mathrm{yr}^{-1}$

$0\nu\beta\beta$ Results

(*) CUORE goal with full exposure [not the current sensitivity]

Using NME range for 130 Te $m_{\beta\beta} < (90-305) \,\mathrm{meV}$

CUPID-Mo: Phys. Rev. Lett. 126, 181802 (2021) CUPID-0: Phys. Rev. Lett. 123, 032501 (2019) GERDA: Phys. Rev. Lett. 125, 252502 (2020) KamLAND-Zen: Phys. Rev. Lett. 117, 082503 (2016)

CUORE Science Program

- Data taking to continue at least until ~2024
- Improve analysis methods and reconstruction tools

Other analyses ongoing

- $2\nu\beta\beta$ of ¹³⁰Te
- Full background model being developed as we collect more data
- Double beta on excited states and of other isotopes of Te
- Including $0\nu\beta\beta$ M2 events to increase sensitivity
- BSM searches and Dark Matter searches

Two neutrino double beta decay

Phys. Rev. Lett. 126, 171801 (2021)

• Most precise ¹³⁰Te $2\nu\beta\beta$ half-life to date $\rightarrow T_{1/2}^{2\nu} = 7.71_{-0.06}^{+0.08} (\text{stat.})_{-0.15}^{+0.12} (\text{syst.}) \times 10^{20} \text{ yr}$

Major background sources identified and ascribed to different locations in the experimental setup using

- Coincidence analysis
- Gamma peaks
- Alpha peaks
- Radio-assay measurements
- Data from neutron activation
- 300.7 kg·yr of TeO₂
- Fit range: 350 keV to 2.8 MeV
- Data-MonteCarlo fit
- Background model being improved on with more data.

Double beta decay of ¹³⁰Te to excited states

EPJC 81, 567 (2021)

- Three possible signatures with betas and deexcitations gammas considered
- Analysis on fully contained decays with coincident M2 or M3 events.
- 372.5 kg·yr of TeO₂
- Improved previous result by factor 5

$$\star$$
 $\beta\beta$ energy release + γ energy release \star γ path

$$(T_{1/2})_{0_2^+}^{0\nu} > 5.9 \times 10^{24} \text{ yr at 90\% C.I.}$$

$$(T_{1/2})_{0_2^+}^{2\nu} > 1.3 \times 10^{24} \text{ yr at 90\% C.I.}$$

Phys. Rev. C. 105, 065504 (2022)

- Small isotopic abundance: only 0.09%
- 355.7 kg·yr of TeO₂ \rightarrow 0.24 kg·yr of ¹²⁰Te
- Clear signature: $^{120}\text{Te} + e^- \rightarrow ^{120}Sn + X + 2\gamma_{511}$
- Multiple signatures in M1, M2 and M3
- One order of magnitude better the previous result

Signature	Particles	Signal Peak	Multiplicity	Energy range [keV]		Containment efficiency	
	Detected	Position [keV]	Waterpricity	$\Delta \mathrm{E}_0$	$\Delta \mathrm{E}_1$	$\Delta \mathrm{E}_2$	$arepsilon_{ m mc} \ [\%]$
(a)	$eta^+ + X + \gamma_{511}$	1203.8	1	[1150, 1250]			12.8(5)
(b)	$eta^+ + X + 2\gamma_{511}$	1714.8	1	[1703, 1775]			13.1(5)
(c)	$\left(eta^{+}+X,\gamma_{511} ight)$	(692.8, 511)	2	[650,750]	[460,560]		4.10(20)
(d)	$(\beta^+ + X + \gamma_{511}, \ \gamma_{511})$	(1203.8, 511)	2	[1150, 1250]	[460, 560]		13.8(6)
(e)	$(\beta^+ + X, \gamma_{511}, \gamma_{511})$	(692.8, 511, 511)	3	[650,750]	[460,560] [4	60,560	2.15(9)

- Isotopic abundance: 31.75%
- 309.33 kg·yr of TeO₂ \rightarrow 78.56 kg·yr of 128 Te
- Low $Q_{\beta\beta}$ of 866.7 keV
 - Dominated by $2\nu\beta\beta$ events from ¹³⁰Te as well as ambient radioactivity
- M1 events in the [820-890] keV region of interest

$$T_{1/2}^{0\nu} > 3.6 \times 10^{24} \text{ yr at } 90\% \text{ C.I.}$$

30 times better than previous direct limit

Life beyond CUORE: CUORE upgrade with Particle ID (CUPID)

CUPID Experiment

- Will operate in the same cryostat that currently houses CUORE
- Goal: Fully probe the "Inverted Hierarchy" region. Improve sensitivity to $m_{\beta\beta}$ by factor of ~5 relative to CUORE

Improved Sensitivity from Background Reduction

- Particle identification
- Muon veto
- Increased Q value for reduced γ/β backgrounds

CUPID

CUORE 130 Te Bolometer

CUPID 100 Mo Scintillating Bolometer

- $Q_{\beta\beta} = 2527 \text{ keV} < 2615 \text{ keV}$ peak
- Measure only heat
- No particle ID

- $Q_{\beta\beta}$ = 3034 keV: Most β/γ backgrounds reduced
- Measure both heat + light
- Particle ID to actively discriminate α particles

		V		
	CUPID	CUPID Reach		
Mass (kg)	450	450		
¹⁰⁰ Mo Mass (kg)	240	240		
Resolution (keV FWHM)	5	5		
Background Index (counts/(keV kg yr))	10-4	2 x 10 ⁻⁵		
90% CL Half-life Exclusion (meV)	1.4 x 10 ²⁷	2.2 x 10 ²⁷		
3σ Half-life Discovery (meV)	1 x 10 ²⁷	2 x 10 ²⁷		
90% CL m _{ββ} Exclusion (meV)	10 - 17	8.4 - 14		
3σ Discovery (meV)	12 - 20	9 - 15		

CUPID Sensitivity

Summary

- Rich science program with $0\nu\beta\beta$ search at the frontier
- CUORE a ton scale cryogenic experiment will be able to probe $\langle m_{\beta\beta} \rangle \sim 45 210$ meV
- Data taking at least till 2024 before possible upgrade.
- Natural successor → CUPID, one tonne experiment with particle identification (to cover IHE)

Funding and support

The CUORE Collaboration thanks the directors and staff of the Laboratori Nazionali del Gran Sasso and the technical staff of our laboratories. CUORE is supported by:

- The Istituto Nazionale di Fisica Nucleare (INFN)
- The National Science Foundation under Grant Nos. NSF-PHY-0605119, NSF-PHY-0500337, NSF-PHY-0855314, NSF-PHY-0902171, NSF-PHY-0969852, NSF-PHY-1307204, NSF-PHY-1314881, NSF-PHY-1401832, and NSF-PHY-1404205
- The Alfred P. Sloan Foundation
- The University of Wisconsin Foundation
- Yale University
- The US Department of Energy (DOE) Office of Science under Contract Nos. DE-AC02-05CH11231, DE-AC52-07NA27344, and DE-SC0012654
- The DOE Office of Science, Office of Nuclear Physics under Contract Nos. DE-FG02-08ER41551 and DE-FG03-00ER41138
- The National Energy Research Scientific Computing Center (NERSC)

