Near-future discovery of point sources of ultra-high-energy neutrinos

Niels Bohr Institute, Copenhagen Based on arXiv:2205.15985, with Mauricio Bustamante, Victor B. Valera

KØBENHAVNS UNIVERSITET UNIVERSITY OF COPENHAGEN

Damiano F. G. Fiorillo

Multimessenger astrophysics

Multimessenger astrophysics

Cosmic-rays do not point back to sources

Damiano Fiorillo

 At ultra-high energies hints of anisotropies

> Large-scale dipolar anisotropy (Auger, 2017)

Multimessenger astrophysics many many

Cosmic-rays do not point back to sources

Multimessenger astrophysics Yare absorbed many

Cosmic-rays do not point back to sources

Multimessenger astrophysics ν travel unimpeded Yare absorbed many Cosmic-rays do not Astrophysical neutrinos

point back to sources

Damiano Fiorillo

can locate point sources!

Damiano Fiorillo

High-energy neutrino point sources

IceCube detects neutrinos with TeV-PeV energies

♦ A few candidate sources reported: TXS 0506+056 (IceCube, 2018), AT2019dsg (IceCube, 2021), NGC 1068 (IceCube, 2021)

• Signature of $\sim 100 \text{ PeV}$ cosmic rays

To probe UHECRs (~ 10 EeV) we need UHE neutrinos ($\sim 100 \text{ PeV}$)

Damiano Fiorillo

High-energy neutrino point sources

IceCube detects neutrinos with TeV-PeV energies

♦ A few candidate sources reported: TXS 0506+056 (IceCube, 2018), AT2019dsg (IceCube, 2021), NGC 1068 (IceCube, 2021)

• Signature of $\sim 100 \text{ PeV}$ cosmic rays

To probe UHECRs (~ 10 EeV) we need UHE neutrinos ($\sim 100 \text{ PeV}$)

Damiano Fiorillo

High-energy neutrino point sources

IceCube detects neutrinos with TeV-PeV energies

♦ A few candidate sources reported: TXS 0506+056 (IceCube, 2018), AT2019dsg (IceCube, 2021), NGC 1068 (IceCube, 2021)

• Signature of $\sim 100 \text{ PeV}$ cosmic rays

Can we detect sources of ultrahigh-energy (UHE) neutrinos?

UHE neutrino detection Askaryan effect -

Calibration Pulser

-20m

in-ice shower looks like a moving dipole, producing radio waves

Damiano Fiorillo

 Radio array in IceCube-Gen2 will be sensitive to UHE neutrinos

Start taking data in 2030

Realistic prospects for point source detection at IceCube-Gen2 radio array

UHE neutrinos

Source neutrinos

Damiano Fiorillo

Cosmogenic neutrinos

UHE neutrinos

Source neutrinos

Damiano Fiorillo

Cosmogenic neutrinos

UHECR Cosmic photons

Point source discovery can help discriminate between the two!

UHE neutrinos

Damiano Fiorillo

Landscape of theoretical models for **UHE** neutrinos

- Huge uncertainty in the magnitude of the diffuse flux
- Either cosmogenic or source neutrinos may dominate

Bright sources produce excess of events (multiplets) with similar direction

Bright sources produce excess of events (multiplets) with similar direction

For an alternative et al., 2016

Assume angular uncertainty $\sim 2^\circ$, so we divide the sky in pixels of $2^{\circ} \times 2^{\circ}$ solid angle

Unresolved flux could produce fictitious multiplets by Poisson fluctuations

 $\Rightarrow \sim 3400$ pixels make fluctuations more likely - look-elsewhere effect

 Unresolved flux could produce fictitious multiplets by Poisson fluctuations

 ~ 3400 pixels make fluctuations more likely - look-elsewhere effect

How large is the background?

 Unresolved flux could produce fictitious multiplets by Poisson fluctuations

◆ ~ 3400 pixels make fluctuations more likely - look-elsewhere effect

How large is the background?

Damiano Fiorillo

Detector simulation

 Account for effects of Earth propagation

 Earth propagation leads to anisotropy of the signal

ν_{τ} regeneration

 Effective volume obtained in Valera et al., 2022 using NuRadioMC and NuRadioReco (Glaser et al., 2019)

 Unresolved flux could produce fictitious multiplets by Poisson fluctuations

◆ ~ 3400 pixels make fluctuations more likely - look-elsewhere effect

How large is the background?

Damiano Fiorillo

Main question: smallest multiplet size to claim a point source detection at 3σ ?

- Multiplet size depends on the zenith angle because of background
- Transient sources can be identified more easily - in a short time there is less background

Steady-state sources

Damiano Fiorillo

Exceeds diffuse flux

- \bullet How many sources? n_0
- How far away? Star-formation rate
- \bullet How many neutrinos from each? L_{ν}
- ♦ All the sources cannot exceed the diffuse neutrino flux

Transient sources

Damiano Fiorillo

Exceeds diffuse flux

 \bullet How many sources explode? \mathscr{R}_0

How far away? Star-formation rate

 \bullet How many neutrinos from each? E_{ν}

✦ All the sources cannot exceed the diffuse neutrino flux

Main question: what do we learn from a (non-)detection?

Exceeds diffuse flux

Prob. of detection > 90%, excl. if no detection Prob. of detection < 10%, excl. if at least one detection

Main question: what do we learn from a (non-)detection?

Exceeds diffuse flux

Most steady-state sources are unlikely to be discovered

Prob. of detection > 90%, excl. if no detection Prob. of detection < 10%, excl. if at least one detection

Damiano Fiorillo

Main question: what do we learn from a (non-)detection?

Exceeds diffuse flux

Prob. of detection > 90%, excl. if no detection Prob. of detection < 10%, excl. if at least one detection

14

Damiano Fiorillo

Main question: what do we learn from a (non-)detection?

Exceeds diffuse flux

Most transient sources could be discovered, if they dominate diffuse flux

Prob. of detection > 90%, excl. if no detection Prob. of detection < 10%, excl. if at least one detection

14

Conclusions

- the-art detector simulation
- Projected constraints on source populations from multiplet searches
- for transient sources

Damiano Fiorillo

First quantitative prospects for detection of UHE neutrino point sources, using state-of-

Point source discovery may be within reach of IceCube-Gen2 Radio Array, especially

Results strongly depend on angular resolution, while slightly change with array design

Backup slides

Multiplet size

$$p = \sum_{k=n_i}^{+\infty} (\mu_i^k/k!)e^{-\mu_i}$$
 Local p-value
$$\pi_i(p) = \sum_{k=\bar{n}_i(p)}^{+\infty} \frac{\mu_i^k}{k!}e^{-\mu_i}$$
 Prob. of exces
$$P_0(p) = \prod_i (1 - \pi_i(p))$$
 Prob. of no ex

We require P_0 to be larger than the confidence level

Damiano Fiorillo

ess in a single pixel

xcess in any pixel

Multiplet size - transients

$$p = \sum_{k=n_i}^{+\infty} (\mu_i^k/k!)e^{-\mu_i}$$
 Local p-value
$$\pi_i(p) = \sum_{k=\bar{n}_i(p)}^{+\infty} \frac{\mu_i^k}{k!}e^{-\mu_i}$$
 Prob. of exces
$$P_0(p) = \prod_i (1 - \pi_i(p))$$
 Prob. of no ex

We require P_0 to be larger than the confidence level

Damiano Fiorillo

For burst duration δt and exposure T we introduce $T/\delta t$ bins in time

ss in a single pixel

xcess in any pixel

Chances of detection

Damiano Fiorillo

 $P(n_i) = \sum_{\sigma_i} \frac{\lambda^{\sigma_i} e^{-\lambda}}{\sigma_i!} \prod_{\alpha=1}^{\sigma_i} \int p(z_\alpha) dz_\alpha \frac{(b_i + \sum_{\alpha=1}^{\sigma_i} s(z_\alpha))^{n_i}}{n_i!} e^{-b_i - \sum_{\alpha=1}^{\sigma_i} s(z_\alpha)}$ Number of events follows a Poisson distribution expected number Redshift of events come distribution of from diff. each source background and follows star sources formation rate

Chances of detection

Damiano Fiorillo

 $P(n_i) = \sum_{\sigma_i} \frac{\lambda^{\sigma_i} e^{-\lambda}}{\sigma_i!} \prod_{\alpha=1}^{\sigma_i} \int p(z_\alpha) dz_\alpha \frac{(b_i + \sum_{\alpha=1}^{\sigma_i} s(z_\alpha))^{n_i}}{n_i!} e^{-b_i - \sum_{\alpha=1}^{\sigma_i} s(z_\alpha)}$ Number of events follows a Poisson distribution expected number Redshift of events come distribution of from diff. each source background and follows star sources formation rate

Damiano Fiorillo

Impact of detector design

 O^8 Earth atio eu

Impact of angular resolution

Impact of background model

Chances of detection

Damiano Fiorillo

 For a given source population, three random variables:

Number of sources in a pixel

Source distance

Number of events from the source

 Averaging over all three, we obtain probability of significant multiplets

Damiano Fiorillo

Main question: what do we learn from a (non-)detection?

No detection excludes very bright sources

 At least one detection excludes dim sources

 Most steady-state sources not expected to be discovered

Damiano Fiorillo

Main question: what do we learn from a (non-)detection?

No detection excludes very bright sources

- At least one detection excludes dim sources
- Most transient sources could be discovered, if they dominate diffuse flux

