Supernova Remnants at TeV Energies with VERITAS Array

Sajan Kumar for VERITAS Collaboration

TeVPA 2022, Kingston, Canada 08-Aug-2022

- Motivation for gamma-ray astronomy
- Technical details about VERITAS array
- Supernova remnants study with VERITAS
 - ✓ Cassiopeia A
 - ✓ IC 443

Cosmic rays and γ **-rays**

VERITAS array

- Cherenkov light is emitted from EM shower
- Light is focussed onto a fast-response camera
- Analysis of images is done to reconstruct properties of shower; energy, direction, timing

- Four telescopes
- Each telescope has a diameter of 12 m
- PMT camera with a field of view of 3.5 degrees
- Energy range: 85 GeV to > 30 TeV
- Angular resolution: ~ 5 arc minute at 1 TeV

SNRs as origin of Cosmic rays

- Cosmic rays are mainly charged particles that contribute an energy density of 1 eV cm⁻³ in our Galaxy
- SNRs are considered as the best candidates for the origin of Galactic CRs up to 10¹⁵ eV (PeVatron)
 - Power required to maintain the cosmic ray flux in our galaxy can be supplied by supernova explosions if 2-3 SNe happen per century and converted 10% of their energy into CRs
 - Diffusive shock acceleration naturally explains the power-law spectrum of cosmic rays (α = -2.7 up to PeV energies)

Blasi et al. 2013

SNR: Cassiopeia A

Young SNR (~ 350 years) results from the type IIb explosion of a massive star

- Explosion drives shock waves into the circumstellar medium
- ◆ Particles get accelerated at the shocks by *diffuse shock acceleration (DSA)*

Can SNR also accelerate protons? To test this, observations in gamma-ray regime can be helpful

VERITAS and Fermi-LAT spectral measurements of Cas A

- ~65 hours of VERITAS data (200 GeV 10 TeV)
- ~11 years of Fermi-LAT data (100 MeV 500 GeV)

....SED Modelling

Emission Processes : Synchrotron, Bremsstrahlung, Inverse Compton, Pion Decay

Electron dominated emission

Conclusion: Acceleration of protons up to TeV is required for any scenario, however gamma-ray spectrum still not showing energies up to 100 TeV

A. U. Abeysekara et al 2020 ApJ 894 51

Middle aged SNR: IC 443

- Remnant of core collapse SN evolving in inhomogeneous environment
 - -varying amount of target material
- Interacting with a molecular cloud (average density of particles ~ 200 cm⁻³)
- Distance of 1.5 kpc, 0.75°
- Age uncertain, 3-30 kyr

http://en.wikipedia.org/wiki/Jellyfish_nebula

TeVPA 2022

Observations

• Fermi-LAT

- 10.5 years of data 2008-08-04 to 2019-02-28, pass8r3
- To match VERITAS PSF, events above 5 GeV in two best PSF classes (PSF2, PSF3) are selected

VERITAS

- 155 hours of quality data
- To improve angular reconstruction, events with images in at least three telescopes are selected
- Energy threshold ~180 GeV

Fermi analysis

Preliminary TeVPA 2022

 Choose different spatial templates to understand morphology of IC 443 emission

- Akaike information criterion = 2k -TS is used to find the best-fit model
- LAT deconvolve model is the best model

Spatial model	$\ln \mathcal{L}$	TS	k	Δ AIC	Ref.	
Null	-15070.437	-	-	-		
LAT deconvolution	-10729.047	8682.780	3	-17359.560		
LAT 4 regions	-10725.472	8689.930	12	-17355.860		
Point source	-12660.859	4819.156	3	-9632.312		
Uniform disk	-10882.574	8375.726	3	-16745.452		
Gaussian	-10839.263	8462.348	3	-16918.696		
Gaussian+Point source	-10781.674	8577.526	5	-17145.052		
HCO+ template	-11545.793	7049.288	3	-14092.576		
X-ray template	-11214.903	7711.068	3	-15416.136		
Radio template	-11198.363	7744.148	3	-15482.296		
VERITAS template	-10889.611	8361.652	3	-16717.304		
IR templates						
X-ray + HCO+	-10951.103	8238.668	6	-16465.336		

TeVPA 2022

Fermi-LAT and VERITAS skymaps

VERITAS Significance map

VERITAS excess map

Contours are at 3,6,9 and12 sigma level from left most plot

- Morphology between TeV and GeV emission matches
- Indicate that same type of particles are producing both GeV/TeV emission

TeVPA 2022

Aug 08, 2022

Sajan Kumar

Morphology comparison at other wavelengths

Spectral studies

Aug 08, 2022

Sajan Kumar

Spectral Modelling

Preliminary TeVPA 2022

The spectrum softens from a power-law index of ~2.4 in GeV band to ~ 3.0 in the VHE band in each region, and for the entire SNR

TeVPA 2022

Aug 08, 2022

Sajan Kumar

Broad band picture for entire SNR

- Smooth rollover of PL index from 2 (GeV) to 3 (TeV)
- Spectrum agrees with model from literature

- We have a proof of cosmic ray acceleration in SNRs (pion bump in IC 443, Cas A)
 - There is still a lack of evidence of energy reaching 10¹⁵ eV
- Resolved morphology and getting spectrum from different parts help to understand acceleration mechanism under different environmental conditions

Thank you