

MAGIC observations of the putative PeVatron SNR G106.7+2.7 in the proximity of the Boomerang PWN

Marcel Strzys^a, Tomohiko Oka^b, Takayuki Saito^a, Hidetoshi Kubo^a for the MAGIC Collaboration

a) ICRR, The University of Tokyo, b) Kyoto University

TeVPa Conference, Kingston, Canada

10th August 2022

The strange case of PeVatrons

- So far unclear what is the maximum energy of the Galactic CR component; up to the CR knee?
- Recent observations of air shower arrays (e.g. LHAASO) provide list of PeVatron candidates
- Still, no conclusive evidence of hadronic PeV accelerator

Source	Possible Association	Reference	
HESS J1745-290	Sagittarius A*/Galactic center	[39]	
Crab/LHAASO J0534+2202	PSR J0534+2200	[26,28,41,107]	
LHAASO J1825-1326/2HWC J1825-134	PSR J1826-1334/PSR J1826-1256	[28,134]	
LHAASO J1839-0545/2HWC 1837-065	PSR J1837-0034/PSRJ1838-0537	[28,40]	
LHAASO J1843-0338/2HWC J1844-032	SNR G.28.6-0.1	[28,40]	
LHAASO J1849-0003	PSR J1849-0001/W43	[28]	
LHAASO J1908+0621/MGRO 1908+06/	SNR G40.5-0.5/PSR 1907+0602/PSR 1907+0631	[28,40]	
2HWC 1908+063			
LHAASO J1929+1745	PSR J1928+1746/PSR1930+1852/SNR G54.1+0.3	[28]	
LHAASO J1956+2845	PSR J1958+2846/SNR G66.0-0.0	[28]	
LHAASO J2018+3651	PSR J2021+3651/Sh 2-104 (HII/YMC)	[28]	
HWC J2019+368		[40]	
LHAASO J2032+4102/2HWC J2031+415	Cygnus OB2/PSR 2032+4127/SNR G79.8+1.2	[28,135]	
LHAASO 12108+5157		[28]	
LHAASO J2226+6057	SNR G106.3+2.7/PSR J2229+6114	[28,69]	
HESS J1702-420A	SNK G344.7-0.1/PSK J1702-4128	[136,137]	

[Cristofari21; arxiv:2110.07956]

M. Strzys

SNR G106.3 & the Boomerang PWN

- Comet shape SNR with head and tail (Joncas & Higgs, 1990) seen in radio continuum.
- Head seems to be colliding with dense molecular cloud
- PWN is at the edge of head PSR J2229+6114
 - \rightarrow L_{sd} = 2.2 x 10³⁷erg/s
 - \rightarrow T_{Sd} = 10kyr
 - \rightarrow d = 3 kpc (X-ray absorption)
- Association of HI with SNR:
 - → SNR G106 @ d = 800 pc.
 - → 14pc long; 6pc wide
- Non-thermal X-ray shows characteristic profile

M. Strzys

SNR G106.3 in γ rays

- Well known γ-ray source
- Emission is extended in the TeV range
- Recent detection up to 500 TeV by LHAASO
 - Possible PeVatron;
 but origin not fully determined yet

Objectives for study by MAGIC:

 Deep study with higher angular resolution

M. Strzys

4/16

MAGIC observations of SNR G106.3

5/16

- Located at La Palma, Canary islands, Spain. 2200m a.s.l.
- Two telescopes with a 17m Ø dish
- FoV: Ø 3.5°
- Energy range: 30 GeV - 100 TeV
- Angular resolution (68% cont.):
 - → 0.084° > 0.2 TeV
 - → 0.072° > 1 TeV
- EnergyResolution: 20% (0.1 - 10 TeV)

Observations of G106.3+2.7

• Period: May 2017 – Aug. 2019

Eff. Obs. Time: 122 h

• ZA rage: 30 – 50 °

Analysys threshold: 0.2 TeV

Overall Skymap taken with MAGIC

- MAGIC observed extended emission coinciding with radio shell
- MAGIC observes two emission peaks, one towards the head and one towards tail

Energy dependent morphology

- Morphology changes with energy
- Consistent with previous measurements, emission from head region faints towards higher energies
- Recent result from HAWC also shows similar structure

Statistical analysis of the emission regions >0.2 TeV

M. Strzys 8/16

Statistical analysis of the emission regions 6-30 TeV

M. Strzys 9/16

Spectra of the emission regions

Source	$N_0 (10^{-14} \text{ cm}^{-2} \text{ s}^{-1} \text{ TeV}^{-1}) \text{ at } 3 \text{ TeV}$	Γ	χ^2/ndf
head	$3.8 \pm 0.7_{\rm stat} \pm 0.7_{\rm sys}$	$2.12 \pm 0.12_{\rm stat} \pm 0.15_{\rm svs}$	5.5/6
tail	$6.0 \pm 0.7_{\rm stat} \pm 1.0_{\rm sys}$	$1.83 \pm 0.10_{\rm stat} \pm 0.15_{\rm sys}$	2.6/6
VER J2227+608 (MAGIC)	$13.1 \pm 1.1_{\text{stat}} \pm 2.1_{\text{sys}}$	$1.91 \pm 0.07_{\rm stat} \pm 0.15_{\rm sys}$	7.1/6
VER J2227+608 (VERITAS, Acciari et al. 2009)	$11.5 \pm 2.7_{\text{stat}} \pm 3.5_{\text{sys}}$	$2.3 \pm 0.33_{\rm stat} \pm 0.30_{\rm sys}$	-

- Consistent with prev. measurements when using same integration region
- Tail slighly harder

M. Strzys 10/16

Modelling assumptions

- Boomerang PWN and SNR G106.3 are associated.
- They are located at 800 pc with an age of 3 10 kyr.
- head and tail emisssion region have different physics conditions
- Emission seen >10 TeV by air shower arrays originates predominantely from tail

J. Goodman @ gamma 2022

M. Strzys

11/16

Spectral modelling of head

	α_{e}	E _{cut, e}	W _e (>1 GeV)	В	α_{p}	E _{cut, p}	W _p (>1 GeV)	N _{gas}	
Leptonic	2.6	360 TeV	1.4 ×10 ⁴⁷ erg	3 µG	ı	-	•	-	ОК
Hadronic A	1.7	150 TeV	1.0 ×10 ⁴⁴ erg	3 µG	1.7	150 TeV	1.0 ×10 ⁴⁶ erg	100 cm ⁻³	Bad
Hadronic B	2.5	60 TeV	1.9 ×10 ⁴⁶ erg	10 μG	1.7	150 TeV	1.0 ×10 ⁴⁶ erg	100 cm ⁻³	ОК

- P and e Spectrum: Power Law + CutOff
- IC seed photon: CMB and IR (inferred with GALPLOP)

 π^0 target gas: based on HI and 12CO

12/16 M. Strzys

Spectral modelling of tail

	$\alpha_{\rm e}$	E _{cut, e}	W _e (>1 GeV)	В	α_{p}	E _{cut, p}	W _p (>1 GeV)	N_{gas}	
Leptonic	2.6	120/1200 TeV	1.6 ×10 ⁴⁷ erg	3 µG	-	-	-	-	Bad
Hadronic A	1.7	1000 TeV	8.7 ×10 ⁴³ erg	3 µG	1.7	1000 TeV	8.7 ×10 ⁴⁵ erg	200 cm ⁻³	Bad
Hadronic B	2.5	35 TeV	2.0 ×10 ⁴⁶ erg	10 μG	1.7	1000 TeV	8.7 ×10 ⁴⁵ erg	200 cm ⁻³	ОК

- P and e Spectrum:Power Law + CutOff
- IC seed photon: CMB and IR (inferred with GALPLOP)
- π⁰ target gas: based on HI and ¹²CO

M. Strzys 13/16

Head:

- Leptonic
 - Electrons may originate from PWN
 - → Synchrotron Cooling time at 360TeV is ~4 kyr
 - → Spin Down power 2.2 x 10³⁷ erg/s and age 3 kyr
 - => total energy release of 2.2x 10⁴⁸ erg.
 - → $W_e = 1.4 \times 10^{47} \, erg$
- Hadronic
 - → Protons are accelerated in SNR shell up to 150 TeV

Tail:

- Hadronic
 - → Protons accelerated up to 1 PeV when the SNR was young, escaped the shock, and interaction with MC
 - → Diffusion length for O(100 TeV) protons: after 5-10 kyr is 40-60 pc > r_{SNR}
 - → The spectral index (1.7) harder than 2.0 may result from diffusion
 - → Spatial coincidence may be by chance?

M. Strzys 15/16

- SNR G106.3+2.7 among most promising PeVatron candidate
- MAGIC detected extended γ-ray emission spatially coinciding with SNR radio morphology
- At HE (5.65-30 TeV), MAGIC-tail emission is significant, whereas head faints
- If emission > 10 TeV measured by Air Shower experiments mainly originates from tail:
 - *head*: electrons escaped from PWN?
 - tail: protons accelerated in the past and interacting with cloud?

Future prospective

Resolving head and tail at energies of 10 - 100 TeV crucial for preciser modelling; sensitive CO observation needed for testing escape scenario

