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Dark Matter Candidates

• Dark matter is known to interact gravitationally

• Otherwise the parameter space is open to search

• This work focuses on the WIMP

[1]
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Search Types

• Indirect detection, direct detection, 

collider searches

• Each are independent detection 

methods

• Solar neutrinos act as a compliment to 

direct detection
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Direct Detection

• The goal is to detect the recoil of nuclei from dark matter interactions

• Parametrized into two cases:

• Spin-dependent, coupling to the overall spin of nuclei

• Spin-independent, which receives a coupling enhancement for higher mass nuclei
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Advantages of an Effective Field Theory

• High-energy theory parametrization

• Fitzpatrick et. al. [2] describe a toy model dark matter 

effective field theory

• Dark matter substructure can be ignored at galactic halo 

velocities
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Hermitian Operators

• The general case of a dark matter 

scattering interaction is considered

• The Hermitian operators that govern the 

interaction are
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Non-Relativistic Effective Operators

• Spin-independent:

• Spin-dependent:

• Novel interactions, such as

• Acts as leading contributor to higher-

energy theories [3]:
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Cross Section

• Cross section becomes a large sum over response functions

• Effective Cross section
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Solar Capture
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Capture Process

• Dark matter is captured when it scatters to below the local 

escape velocity in the Sun
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Geometric Limit

• The Sun has a hard limit of dark matter capture

• We take minimum of the limit and capture rate
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Annihilation in the Sun

• The number density of dark matter is given by

• At steady state, the annihilation rate only depends on the capture:

• The final neutrino flux is found from branching ratios
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Other Applications

• The same calculation in other stars can be performed

• There is current work to integrate with DarkMESA

• Can look at other phenomena like

• Energy transport [4,5]

• Modified main sequence lifetimes [6]

• Triggering thermonuclear explosions in stellar remnants [7-9] 
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Capt’n General

• Capt’n [10] was designed for capture rate calculations

• As standalone

• GAMBIT backend

• DarkMESA companion

• Capt’n uses several parameters to calculate the DM capture rate in s-1

• Solar model including isotopic abundances

• Dark matter halo parameters

• Interaction model
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GAMBIT
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GAMBIT

• GAMBIT [11] combines many separate 

branches of physics to perform global scans 

of novel physics using existing experimental 

data

• Modular design to promote contributions

• Global scans can pick out signals of new 

physics before single experiments
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IceCube Neutrino Observatory

• For the 79-string run, IceCube’s [12] digital optical modules were 

arranged as:

• 73 strings with 125 m horizontal spacing and 17 m vertical spacing

• 6 strings with less than 75 m horizontal spacing and 7 m vertical 

spacing in the DeepCore [13]

• The data is broken into three independent streams, of two varieties:

• Low energy: exterior strings act as muon veto for the central array 

(Summer Low and Winter Low)

• Higher energy: no restrictions (Winter High)

• IceCube performs better at higher-energy neutrino detection

[14]
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Direct Detection Experiments

• Eight direct detection experiments were included:

• LUX 2016 [15]

• XENON1T 2018 [16]

• PandaX-II 2016 [17] and 2017 [18]

• PICO-60 2017 [19]

• CRESST-II [20]

• CDMSlite [21]

• DarkSide-50 [22]

• These are:

• Dual-phase time projection chambers (LUX, 

XENON1T, PandaX-II, and DarkSide-50)

• Super-heated fluorine (PICO-60)

• Cryogenic crystal detectors (CRESST-II and 

CDMSlite)
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Added Experiments

• Two extra experiments were included in a post processing run

• ANTARES from Dark Ghosts 2022 presented by Chiara Poirè [23] 

• IceCube Update from Dark Ghosts 2022 presented by Stephan 

Meighen-Berger [24]
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Scanning with Diver

• Diver is a differential evolution scanner in GAMBIT

• It can rapidly map likelihood contours

• But cannot give posteriors

• Differential evolution occurs in three steps

• Mutation

• Crossover

• Selection

[25]
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Results and Scans
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Capt’n Capture Rates c1 and c4

• Capt’n can return capture rates per isotopic contribution

• Capt’n shows accuracy around ~5% of the previous Catena and Schwabe [26]
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Capt’n Capture Rates c10 and c11

• Certain isotopes dominate depending on coupling
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GAMBIT Scan Parameters

• The halo parameters are shared between all GAMBIT scans

• These scans are presented as profiled likelihoods with 90% C.L.

• All scans have 2 decay channel versions: 𝑏ത𝑏 and 𝑊+𝑊−
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Spin-Independent and Spin-Dependent 𝑏ത𝑏 Channel

• The bottom quark annihilation channel for c1 (left) and c4 (right)

• Dominated by leading direct detection experiments

Preliminary Preliminary
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Spin-Independent and Spin-Dependent 𝑏ത𝑏 Channel Breakdown

• The bottom quark annihilation channel for c1 (left) and c4 (right)

• Lead by XENON1T in spin-independent, and PICO-60 in spin-dependent

Preliminary Preliminary
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Spin-Independent and Spin-Dependent 𝑊+𝑊− Channel

• The W boson annihilation channel for c1 (left) and c4 (right)

• Spin-dependent channel receives solar neutrino contribution

PreliminaryPreliminary
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Spin-Independent and Spin-Dependent 𝑊+𝑊− Channel 
Breakdown
• The W boson annihilation channel for c1 (left) and c4 (right)

• IceCube out-competes in spin-dependent dark matter detection around ~500 GeV

PreliminaryPreliminary
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C10 Coupling Experiment Breakdown

• The W boson (right) and bottom quark annihilation channels for c10

• W boson channel sees contribution from solar neutrinos
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Conclusions
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Conclusions

• Capt’n open to public and has already seen use by GAMBIT community (2106.02056)

• Need accurate modeling of all isotopes in the Sun for accurate capture rates!

• This is some of the first set of global constraints on non-relativistic effective operator dark matter from direct 

detection experiments in addition to solar neutrinos

• IceCube solar neutrinos can assist with spin-dependent direct detection searches

• Whenever new data is added to GAMBIT this work can be re-run with trivial modifications to improve 

constraints

• This work is currently being modified for use in a Supernova scattering search lead by Christopher Cappiello

https://github.com/aaronvincent/captngen
https://gambit.hepforge.org/
https://arxiv.org/pdf/2106.02056.pdf
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Capt’n Comparisons c1
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Capt’n Comparisons c3



4242

Capt’n Comparisons c4
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Capt’n Comparisons c5
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Capt’n Comparisons c6
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Capt’n Comparisons c7
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Capt’n Comparisons c8
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Capt’n Comparisons c9
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Capt’n Comparisons c10
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Capt’n Comparisons c11
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Capt’n Comparisons c12
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Capt’n Comparisons c13
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Capt’n Comparisons c14
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Capt’n Comparisons c15
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GAMBIT-Capt’n Dependency

• Capt’n acts as a backend of DarkBit

• It is used to calculate the capture rate for GAMBIT
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GAMBIT Direct Detection

• DDCalc acts to translate the couplings to cross sections for the DD experiments
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All Coupling Parameters
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c3 𝑏ത𝑏 and 𝑊+𝑊− Channels

• c3 𝑏ത𝑏 left and 𝑊+𝑊− right
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c5 𝑏ത𝑏 and 𝑊+𝑊− Channels

• c5 𝑏ത𝑏 left and 𝑊+𝑊− right



5959

c6 𝑏ത𝑏 and 𝑊+𝑊− Channels

• c6 𝑏ത𝑏 left and 𝑊+𝑊− right
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c7 𝑏ത𝑏 and 𝑊+𝑊− Channels

• c7 𝑏ത𝑏 left and 𝑊+𝑊− right
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c8 𝑏ത𝑏 and 𝑊+𝑊− Channels

• c8 𝑏ത𝑏 left and 𝑊+𝑊− right
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c9 𝑏ത𝑏 and 𝑊+𝑊− Channels

• c9 𝑏ത𝑏 left and 𝑊+𝑊− right
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c10 𝑏ത𝑏 and 𝑊+𝑊− Channels

• c10 𝑏ത𝑏 left and 𝑊+𝑊− right
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c11 𝑏ത𝑏 and 𝑊+𝑊− Channels

• c11 𝑏ത𝑏 left and 𝑊+𝑊− right
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c12 𝑏ത𝑏 and 𝑊+𝑊− Channels

• c12 𝑏ത𝑏 left and 𝑊+𝑊− right
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c13 𝑏ത𝑏 and 𝑊+𝑊− Channels

• c13 𝑏ത𝑏 left and 𝑊+𝑊− right



6767

c14 𝑏ത𝑏 and 𝑊+𝑊− Channels

• c14 𝑏ത𝑏 left and 𝑊+𝑊− right
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c15 𝑏ത𝑏 and 𝑊+𝑊− Channels

• c15 𝑏ത𝑏 left and 𝑊+𝑊− right
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Nuisance Parameters

• The nuisance parameters showed no preference



70


