Global fit of Non-relativistic Effective Operator Dark Matter using Solar Neutrinos

Neal Avis Kozar

Aaron Vincent

Work with Aaron Vincent, Pat Scott, and help from the GAMBIT collaboration

AUGUST 11, 2022

TeVPA

Talk Summary

Introduction	Solar Capture	GAMBIT
Results and Scans	Conclusions	

Introduction

Dark Matter Candidates

- Dark matter is known to interact gravitationally
- Otherwise the parameter space is open to search
- This work focuses on the WIMP

Search Types

- Indirect detection, direct detection, collider searches
- Each are independent detection methods
- Solar neutrinos act as a compliment to direct detection

Direct Detection

- The goal is to detect the recoil of nuclei from dark matter interactions
- Parametrized into two cases:
 - Spin-dependent, coupling to the overall spin of nuclei
 - Spin-independent, which receives a coupling enhancement for higher mass nuclei

$$\sigma_{SI} = \frac{\mu^2}{\mu_n^2} A^2 \sigma_n$$

Advantages of an Effective Field Theory

- High-energy theory parametrization
- Fitzpatrick et. al. [2] describe a toy model dark matter effective field theory
- Dark matter substructure can be ignored at galactic halo velocities

$$\hat{\mathbf{q}}_{\max} = 200 \text{ MeV}$$

Hermitian Operators

- The general case of a dark matter scattering interaction is considered
- The Hermitian operators that govern the interaction are

$$\mathbbm{1}_{\chi N}$$
 , $i \mathbf{\hat{q}}$, $\mathbf{\hat{v}}^{\perp}$, $\mathbf{\hat{S}}_{\chi}$, $\mathbf{\hat{S}}_{N}$

 $\hat{\mathbf{v}}^{\perp} = \hat{\mathbf{v}} + \hat{\mathbf{q}}/(2\mu_N)$

Non-Relativistic Effective Operators

- Spin-independent: $\hat{\mathcal{O}}_1 = \mathbbm{1}_{\chi N}$
- Spin-dependent: $\hat{\mathcal{O}}_4 = \hat{\mathbf{S}}_\chi \cdot \hat{\mathbf{S}}_N$
- Novel interactions, such as

$$\hat{\mathcal{O}}_{10} = i\hat{\mathbf{S}}_N \cdot \frac{\hat{\mathbf{q}}}{m_N}$$

• Acts as leading contributor to higherenergy theories [3]:

$$\mathcal{L} \supset \lambda_1 \phi \bar{\chi} \chi - i h_2 \phi \bar{q} \gamma^5 q \to \hat{\mathcal{H}} \supset \left(c_{10}^0 t^0 + c_{10}^1 t^1 \right) \hat{\mathcal{O}}_{10}$$

$$\begin{split} \hat{\mathcal{O}}_{1} &= \mathbb{1}_{\chi N} & \hat{\mathcal{O}}_{9} = i\hat{\mathbf{S}}_{\chi} \cdot \left(\hat{\mathbf{S}}_{N} \times \frac{\hat{\mathbf{q}}}{m_{N}}\right) \\ \hat{\mathcal{O}}_{2} &= \hat{\mathbf{v}}^{\perp} \cdot \hat{\mathbf{v}}^{\perp} & \hat{\mathcal{O}}_{10} = i\hat{\mathbf{S}}_{N} \cdot \frac{\hat{\mathbf{q}}}{m_{N}} \\ \hat{\mathcal{O}}_{3} &= i\hat{\mathbf{S}}_{N} \cdot \left(\frac{\hat{\mathbf{q}}}{m_{N}} \times \hat{\mathbf{v}}^{\perp}\right) & \hat{\mathcal{O}}_{11} = i\hat{\mathbf{S}}_{\chi} \cdot \frac{\hat{\mathbf{q}}}{m_{N}} \\ \hat{\mathcal{O}}_{4} &= \hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{S}}_{N} & \hat{\mathcal{O}}_{12} = \hat{\mathbf{S}}_{\chi} \cdot \left(\hat{\mathbf{S}}_{N} \times \hat{\mathbf{v}}^{\perp}\right) \\ \hat{\mathcal{O}}_{5} &= i\hat{\mathbf{S}}_{\chi} \cdot \left(\frac{\hat{\mathbf{q}}}{m_{N}} \times \hat{\mathbf{v}}^{\perp}\right) & \hat{\mathcal{O}}_{13} = i\left(\hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{v}}^{\perp}\right) \left(\hat{\mathbf{S}}_{N} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right) \\ \hat{\mathcal{O}}_{6} &= \left(\hat{\mathbf{S}}_{\chi} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right) \left(\hat{\mathbf{S}}_{N} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right) & \hat{\mathcal{O}}_{14} = i\left(\hat{\mathbf{S}}_{\chi} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right) \left(\hat{\mathbf{S}}_{N} \cdot \hat{\mathbf{v}}^{\perp}\right) \\ \hat{\mathcal{O}}_{7} &= \hat{\mathbf{S}}_{N} \cdot \hat{\mathbf{v}}^{\perp} & \hat{\mathcal{O}}_{15} = -\left(\hat{\mathbf{S}}_{\chi} \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right) \left[\left(\hat{\mathbf{S}}_{N} \times \hat{\mathbf{v}}^{\perp}\right) \cdot \frac{\hat{\mathbf{q}}}{m_{N}}\right] \\ \hat{\mathcal{O}}_{8} &= \hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{v}}^{\perp} \end{split}$$

Cross Section

• Cross section becomes a large sum over response functions

$$\begin{split} \frac{\mathrm{d}\sigma_{i}}{\mathrm{d}E}(w^{2},q^{2}) &= \frac{m_{T}}{2\pi w^{2}} P_{\mathrm{tot}}(w^{2},q^{2}) \\ P_{\mathrm{tot}}(w^{2},q^{2}) &= \frac{4\pi}{2J+1} \sum_{\tau=0,1} \sum_{\tau'=0,1} \left\{ \begin{bmatrix} R_{M}^{\tau\tau'} \left(v_{T}^{\perp 2}, \frac{q^{2}}{m_{N}^{2}} \right) W_{M}^{\tau\tau'}(y) \\ &+ R_{\Sigma''}^{\tau\tau'} \left(v_{T}^{\perp 2}, \frac{q^{2}}{m_{N}^{2}} \right) W_{\Sigma''}^{\tau\tau'}(y) + R_{\Sigma'}^{\tau\tau'} \left(v_{T}^{\perp 2}, \frac{q^{2}}{m_{N}^{2}} \right) W_{\Sigma''}^{\tau\tau'}(y) \end{bmatrix} \\ &+ \frac{q^{2}}{m_{N}^{2}} \begin{bmatrix} R_{\Phi''}^{\tau\tau'} \left(v_{T}^{\perp 2}, \frac{q^{2}}{m_{N}^{2}} \right) W_{\Phi''M}^{\tau\tau'}(y) + R_{\Phi''M}^{\tau\tau'} \left(v_{T}^{\perp 2}, \frac{q^{2}}{m_{N}^{2}} \right) W_{\Phi''M}^{\tau\tau'}(y) \\ &+ R_{\Phi''}^{\tau\tau'} \left(v_{T}^{\perp 2}, \frac{q^{2}}{m_{N}^{2}} \right) W_{\Phi''}^{\tau\tau'}(y) + R_{\Delta}^{\tau\tau'} \left(v_{T}^{\perp 2}, \frac{q^{2}}{m_{N}^{2}} \right) W_{\Delta''}^{\tau\tau'}(y) \\ &\sigma_{p} &= \frac{\left(c_{i}^{\tau} \mu_{n} \right)^{2}}{\pi} \\ &+ R_{\Delta\Sigma'}^{\tau\tau'} \left(v_{T}^{\perp 2}, \frac{q^{2}}{m_{N}^{2}} \right) W_{\Delta\Sigma'}^{\tau\tau'}(y) \end{bmatrix} \right\} \end{split}$$

٠

Solar Capture

Capture Process

• Dark matter is captured when it scatters to below the local escape velocity in the Sun

$$C = 4\pi \int_{0}^{R_{\odot}} \mathrm{d}RR^{2} \int_{0}^{\infty} \mathrm{d}u \frac{f(u)}{u} w \Omega_{v}^{-}(w)$$
$$\Omega_{v}^{-}(w) = \sum_{i} n_{i} w \Theta \left(\frac{\mu_{i}}{\mu_{+,i}^{2}} - \frac{u^{2}}{w^{2}}\right) \int_{E_{k}u^{2}/w^{2}}^{E_{k}\mu_{i}/\mu_{+,i}^{2}} \mathrm{d}E_{R} \frac{\mathrm{d}}{\mathrm{d}x}$$

$$E_R \frac{\mathrm{d}\sigma_i}{\mathrm{d}E_R} (w^2, q^2)$$

Geometric Limit

• The Sun has a hard limit of dark matter capture

$$C_{\max}(t) = \pi R_{\odot}^2(t) \int_0^\infty \frac{f_{\odot}(u)}{u} w^2(u, R_{\odot}) \mathrm{d}u$$

$$C_{\max}(t) = \frac{1}{3}\pi \frac{\rho_{\chi}}{m_{\chi}} R_{\odot}^{2}(t) \left(e^{-\frac{3}{2}\frac{u_{\odot}^{2}}{u_{0}^{2}}} \sqrt{\frac{6}{\pi}} u_{0} + \frac{6G_{N}M_{\odot} + R_{\odot}(u_{0}^{2} + 3u_{\odot}^{2})}{R_{\odot}u_{\odot}} \operatorname{Erf}\left[\sqrt{\frac{3}{2}} \frac{u_{\odot}}{u_{0}} \right] \right)$$

• We take minimum of the limit and capture rate

Annihilation in the Sun

• The number density of dark matter is given by

$$\frac{\mathrm{d}N_{\chi}\left(t\right)}{\mathrm{d}t} = C\left(t\right) - A\left(t\right) - E\left(t\right) = 0$$

• At steady state, the annihilation rate only depends on the capture:

$$\Gamma_A = (C/2) \tanh^2(t/\tau)$$

• The final neutrino flux is found from branching ratios

$$\frac{\mathrm{d}\Phi_{\nu}}{\mathrm{d}E_{\nu}} = \frac{\Gamma_A}{4\pi D^2} \sum_f B_{\chi}^f \frac{\mathrm{d}N_{\nu}^f}{\mathrm{d}E_{\nu}}$$

Other Applications

- The same calculation in other stars can be performed
 - There is current work to integrate with DarkMESA

- Can look at other phenomena like
 - Energy transport [4,5]
 - Modified main sequence lifetimes [6]
 - Triggering thermonuclear explosions in stellar remnants [7-9]

Capt'n General

- Capt'n [10] was designed for capture rate calculations
 - As standalone
 - GAMBIT backend
 - DarkMESA companion

- Capt'n uses several parameters to calculate the DM capture rate in s⁻¹
 - Solar model including isotopic abundances
 - Dark matter halo parameters
 - Interaction model

GAMBIT

GAMBIT

- GAMBIT [11] combines many separate branches of physics to perform global scans of novel physics using existing experimental data
- Modular design to promote contributions
- Global scans can pick out signals of new physics before single experiments

IceCube Neutrino Observatory

- For the 79-string run, IceCube's [12] digital optical modules were arranged as:
 - 73 strings with 125 m horizontal spacing and 17 m vertical spacing
 - 6 strings with less than 75 m horizontal spacing and 7 m vertical spacing in the DeepCore [13]
- The data is broken into three independent streams, of two varieties:
 - Low energy: exterior strings act as muon veto for the central array (Summer Low and Winter Low)
 - Higher energy: no restrictions (Winter High)
- IceCube performs better at higher-energy neutrino detection

Direct Detection Experiments

- Eight direct detection experiments were included:
 - LUX 2016 [15]
 - XENON1T 2018 [16]
 - PandaX-II 2016 [17] and 2017 [18]
 - PICO-60 2017 [19]
 - CRESST-II [20]
 - CDMSlite [21]
 - DarkSide-50 [22]

- These are:
 - Dual-phase time projection chambers (LUX, XENON1T, PandaX-II, and DarkSide-50)
 - Super-heated fluorine (PICO-60)
 - Cryogenic crystal detectors (CRESST-II and CDMSlite)

Added Experiments

- Two extra experiments were included in a post processing run
 - ANTARES from Dark Ghosts 2022 presented by Chiara Poirè [23]
 - IceCube Update from Dark Ghosts 2022 presented by Stephan Meighen-Berger [24]

Scanning with Diver

- Diver is a differential evolution scanner in GAMBIT
- It can rapidly map likelihood contours
- But cannot give posteriors
- Differential evolution occurs in three steps
 - Mutation
 - Crossover
 - Selection

Results and Scans

Capt'n Capture Rates c₁ and c₄

- Capt'n can return capture rates per isotopic contribution
- Capt'n shows accuracy around ~5% of the previous Catena and Schwabe [26]

Capt'n Capture Rates c₁₀ and c₁₁

• Certain isotopes dominate depending on coupling

GAMBIT Scan Parameters

• The halo parameters are shared between all GAMBIT scans

Halo Parameters		Dark Matter Parameters	
$ ho_0$	$0.5~{\rm GeV}~{\rm cm}^{-3}$	m_{dm}	$1-10^4~{ m GeV}$
v_0	$216 - 264 \text{ km s}^{-1}$	c_1^0	$10^{-10} - 10^{-6} { m GeV}^{-2}$
v_{rot}	$216 - 264 \text{ km s}^{-1}$	c_4^0	$10^{-8} - 10^{-4} { m GeV}^{-2}$
v_{esc}	$453 - 603 {\rm ~km~s^{-1}}$	c_{10}^{0}	$10^{-6} - 10^{-2} \text{ GeV}^{-2}$

- These scans are presented as profiled likelihoods with 90% C.L.
- All scans have 2 decay channel versions: $b\overline{b}$ and W^+W^-

Spin-Independent and Spin-Dependent $b\overline{b}$ Channel

• The bottom quark annihilation channel for c_1 (left) and c_4 (right)

• Dominated by leading direct detection experiments

Spin-Independent and Spin-Dependent $b\overline{b}$ Channel Breakdown

- The bottom quark annihilation channel for c_1 (left) and c_4 (right)
- Lead by XENON1T in spin-independent, and PICO-60 in spin-dependent

$$\hat{\mathcal{O}}_1 = \mathbb{1}_{\chi N}$$

$$\hat{\mathcal{O}}_4 = \hat{\mathbf{S}}_{\chi} \cdot \hat{\mathbf{S}}_N$$

Spin-Independent and Spin-Dependent W⁺W⁻ Channel

- The W boson annihilation channel for c_1 (left) and c_4 (right)
- Spin-dependent channel receives solar neutrino contribution

Spin-Independent and Spin-Dependent *W*⁺*W*⁻ Channel Breakdown

- The W boson annihilation channel for c_1 (left) and c_4 (right)
- IceCube out-competes in spin-dependent dark matter detection around ~500 GeV

 $\hat{\mathcal{O}}_1 = \mathbb{1}_{\chi N}$

$$\hat{\mathcal{O}}_4 = \hat{\mathbf{S}}_\chi \cdot \hat{\mathbf{S}}_N$$

C₁₀ Coupling Experiment Breakdown

- The W boson (right) and bottom quark annihilation channels for c_{10}
- W boson channel sees contribution from solar neutrinos

Conclusions

Conclusions

- <u>Capt'n</u> open to public and has already seen use by <u>GAMBIT</u> community (2106.02056)
- Need accurate modeling of *all isotopes* in the Sun for accurate capture rates!
- This is some of the first set of global constraints on non-relativistic effective operator dark matter from direct detection experiments in addition to solar neutrinos
- IceCube solar neutrinos can assist with spin-dependent direct detection searches
- Whenever new data is added to GAMBIT this work can be re-run with trivial modifications to improve constraints
- This work is currently being modified for use in a Supernova scattering search lead by Christopher Cappiello

- [1] M. Schumann, Direct Detection of WIMP Dark Matter: Concepts and Status, J. Phys. G 46 (2019) 103003, [arXiv:1903.03026].
- [2] A. L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, and Y. Xu, *The Effective Field Theory of Dark Matter Direct Detection, JCAP* 02 (2013) 004, [arXiv:1203.3542].
- [3] J. B. Dent, L. M. Krauss, J. L. Newstead, and S. Sabharwal, *General analysis of direct dark matter detection: From microphysics to observational signatures, Phys. Rev. D* **92** (2015) 063515, [arXiv:1505.03117].
- [4] A. C. Vincent and P. Scott, Thermal conduction by dark matter with velocity and momentum-dependent cross-sections, JCAP **04** (2014) 019, [arXiv:1311.2074].
- [5] A. C. Vincent, P. Scott, and A. Serenelli, *Updated constraints on velocity and momentum-dependent asymmetric dark matter, JCAP* **11** (2016) 007, [arXiv:1605.06502].
- [6] J. Lopes and I. Lopes, Asymmetric Dark Matter Imprint on Low-mass Main-sequence Stars in the Milky Way Nuclear Star Cluster, Astrophys. J. 879 (2019) 50, [arXiv:1907.05785].
- [7] J. Bramante, Dark matter ignition of type la supernovae, Phys. Rev. Lett. **115** (2015) 141301, [arXiv:1505.07464].

- [8] J. F. Acevedo, J. Bramante, A. Goodman, J. Kopp, and T. Opferkuch, *Dark Matter, Destroyer of Worlds: Neutrino, Thermal, and Existential Signatures from Black Holes in the Sun and Earth, JCAP* **04** (2021) 026, [arXiv:2012.09176].
- [9] N. F. Bell, G. Busoni, S. Robles, and M. Virgato, Improved Treatment of Dark Matter Capture in Neutron Stars, JCAP 09 (2020) 028, [arXiv:2004.14888].
- [10] N. Avis Kozar, A. Caddell, L. Fraser-Leach, P. Scott, and A. C. Vincent, Capt'n General: A generalized stellar dark matter capture and heat transport code, in Tools for High Energy Physics and Cosmology (2021) [arXiv:2105.06810].
- [11] GAMBIT: P. Athron et. al., GAMBIT: The Global and Modular Beyond-the-Standard-Model Inference Tool, Eur. Phys. J. C 77 (2017) 784,
 [arXiv:1705.07908]. [Addendum: Eur.Phys.J.C 78, 98 (2018)].
- [12] IceCube: P. Scott et. al., Use of event-level neutrino telescope data in global fits for theories of new physics, JCAP **11** (2012) 057, [arXiv:1207.0810].
- [13] IceCube: R. Abbasi et. al., The Design and Performance of IceCube DeepCore, Astropart. Phys. **35** (2012) 615–624, [arXiv:1109.6096].
- [14] IceCube: M. G. Aartsen et. al., Search for Neutrinos from Dark Matter Self-Annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore, Eur. Phys. J. C 77 (2017) 627, [arXiv:1705.08103].
- [15] LUX: D. S. Akerib et. al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303, [arXiv:1608.07648].

- [16] XENON: E. Aprile et. al., Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. **121** (2018) 111302, [arXiv:1805.12562].
- [17] PandaX-II: A. Tan et. al., Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment, Phys. Rev. Lett. **117** (2016) 121303, [arXiv:1607.07400].
- [18] PandaX-II: X. Cui et. al., Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. **119** (2017) 181302, [arXiv:1708.06917].
- [19] PICO: C. Amole et. al., Dark Matter Search Results from the PICO-60 C3F8 Bubble Chamber, Phys. Rev. Lett. 118 (2017) 251301, [arXiv:1702.07666].
- [20] CRESST: G. Angloher et. al., Results on light dark matter particles with a low-threshold CRESST-II detector, Eur. Phys. J. C 76 (2016) 25, [arXiv:1509.01515].
- [21] SuperCDMS: R. Agnese et. al., New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment, Phys. Rev. Lett. **116** (2016) 071301, [arXiv:1509.02448].
- [22] DarkSide: P. Agnes et. al., DarkSide-50 532-day Dark Matter Search with Low-Radioactivity Argon, Phys. Rev. D 98 (2018) 102006, [arXiv:1802.07198].

- [23] ANTARES: C. Poirè, Limits for Dark Matter annihilation in the Sun with ANTARES neutrino telescope, Dark Ghosts 2022, [PDF]
- [24] IceCube: S. Meighen-Berger, Dark Matter Searches with IceCube, Dark Ghosts 2022, [PDF]
- [25] GAMBIT: G. D. Martinez, J. McKay, et. al., Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module, Eur. Phys. J. C 77 (2017) 761, [arXiv:1705.07959].
- [26] R. Catena and B. Schwabe, Form factors for dark matter capture by the Sun in effective theories, JCAP **04** (2015) 042, [arXiv:1501.03729].

Backup Slides

Capt'n Comparisons c₁

Capt'n Comparisons c₃

Capt'n Comparisons c₄

Capt'n Comparisons c₅

Capt'n Comparisons c₆

Capt'n Comparisons c₇

Capt'n Comparisons c₈

Capt'n Comparisons c₉

Capt'n Comparisons c₁₀

Capt'n Comparisons c₁₁

Capt'n Comparisons c₁₂

Capt'n Comparisons c₁₃

Capt'n Comparisons c₁₄

Capt'n Comparisons c₁₅

GAMBIT-Capt'n Dependency

- Capt'n acts as a backend of DarkBit
- It is used to calculate the capture rate for GAM Halo_gNFW_rho0_parameters NREO_DiracDM_parameters Type: ModelParameters Type: ModelParameters Function: primary_parameters Function: primary_parameters Module: WIMP sigmav Module: Halo gNFW rho0 Module: NREO DiracDM WIMP_properties generic_WIMP_sigmav CaptnGeneral_2_0_init DD nonrel WCs Type: WIMP_annihilation Type: WIMPprops Function: NREO_DiracDM_WIMP_properties Type: NREO_DM_nucleon_couplings Type: void Function: generic_WIMP_sigmav_from_parameters Module: WIMP_sigmav Function: CaptnGeneral_2_0_init Function: NREO_couplings_from_parameters Module: BackendIniBit Module: DarkBit Module: NREO DiracDM capture_rate_Sun TH ProcessCatalog DarkMatter ID **DDCalc** mwimp Type: TH_ProcessCatalog Function: TH ProcessCatalog WIMP EFI Type: double Type: std::string Function: DarkMatter ID EFT Type: DD_coup Type: double Function: capture rate Sun NREO Function: mwimp_from_WIMPprops Function: DDCalc C Module: DarkBit Module: DarkBit Module: DarkBit Module: DarkBit Module: DarkSUSY 5 1 3 init equilibration time Su sigmav Type: double Type: double Type: void Function: DarkSUSY_5_1_3_init Function: sigmav_late_universe Module: DarkBit Function: equilibration_time_Sun ssian Module: BackendIniBit Module: DarkBit annihilation rate Sur nulike 1 0 8 init LUX 2016 Calcul nuvield ptr Type: nuyield info Type: double Type: void Type: bool Function: LUX_2016_Calc Function: annihilation rate Sun Function: nulike 1 0 8 init nction: nuvield_from_DS Module: DarkBit Module: BackendIniBit Module: DarkBit Module: DarkBit IC79WH data **IC79WL** data IC79SL data LUX 2016 LogLikelihoo Type: nudata Type: nudata Type: nudata Type: double Function: LUX_2016_GetLogLikelihood Function: IC79WH_full Function: IC79WL_full Function: IC79SL_full Module: DarkBit Module: DarkBit Module: DarkBit Module: DarkBit IC79WH_bgloglike **IC79WH** loglike **IC79WL** loglike IC79WL_bgloglike IC79SL_loglike IC79SL_bgloglike Type: double Function: IC79SL_bgloglike Type: double Type: double Type: double Type: double Type: double Function: IC79WL_bgloglike Function: IC79WH loglike Function: IC79WH bgloglike Function: IC79WL loglike Function: IC79SL loglike Module: DarkBit Module: DarkBit Module: DarkBit Module: DarkBit Module: DarkBit Module: DarkBit IC79 loglike Type: double Function: IC79_loglike

Module: DarkBit

GAMBIT Direct Detection

• DDCalc acts to translate the couplings to cross sections for the DD experiments

All Coupling Parameters

Dark Matter Parameters						
m_{dm} 1 - 10 ⁴ GeV						
c_{1}^{0}	$10^{-10} - 10^{-6} \text{ GeV}^{-2}$	c_{9}^{0}	$10^{-6} - 10^{-2} \text{ GeV}^{-2}$			
c_3^0	10^{-7} - $10^{-3} { m GeV}^{-2}$	c_{10}^{0}	$10^{-6} - 10^{-2} \text{ GeV}^{-2}$			
$c_4^{ m 0}$	10^{-8} - $10^{-4} { m GeV}^{-2}$	$c_{11}^{\bar{0}}$	$10^{-9} - 10^{-5} \text{ GeV}^{-2}$			
$c_5^{ m 0}$	10^{-6} - 10^{-2} GeV^{-2}	$c_{12}^{\bar{0}}$	10^{-8} - 10^{-4} GeV^{-2}			
$c_6^{ m 0}$	10^{-5} - $10^{-1} { m GeV}^{-2}$	$c_{13}^{\bar{0}}$	10^{-6} - 10^{-2} GeV^{-2}			
$c_7^{ m 0}$	10^{-5} - $10^{-1} { m GeV}^{-2}$	$c_{14}^{\bar{0}}$	10^{-5} - $10^{-1} { m GeV}^{-2}$			
c_{8}^{0}	10^{-7} - 10^{-3} GeV^{-2}	$c_{15}^{\bar{0}}$	$10^{-5} - 10^{-1} \text{ GeV}^{-2}$			

 $c_3 b \overline{b}$ and $W^+ W^-$ Channels

• $c_3 b\bar{b}$ left and W^+W^- right

 $c_5 b\overline{b}$ and W^+W^- Channels

• $c_5 b\bar{b}$ left and W^+W^- right

 $c_6 b \overline{b}$ and $W^+ W^-$ Channels

• $c_6 b \overline{b}$ left and W^+W^- right

 $c_7 b \overline{b}$ and $W^+ W^-$ Channels

• $c_7 b\bar{b}$ left and W^+W^- right

 $c_8 b \overline{b}$ and $W^+ W^-$ Channels

• $c_8 b\bar{b}$ left and W^+W^- right

 $c_{9} b \overline{b}$ and $W^{+}W^{-}$ Channels

• $c_9 b\bar{b}$ left and W^+W^- right

 $c_{10} b \overline{b}$ and W^+W^- Channels

• $c_{10} b \overline{b}$ left and W^+W^- right

 $c_{11} b \overline{b}$ and W^+W^- Channels

• $c_{11} b \overline{b}$ left and W^+W^- right

 $c_{12} b \overline{b}$ and W^+W^- Channels

• $c_{12} b \overline{b}$ left and W^+W^- right

 $c_{13} b \overline{b}$ and $W^+ W^-$ Channels

• $c_{13} b \overline{b}$ left and W^+W^- right

 $c_{14} b \overline{b}$ and W^+W^- Channels

• $c_{14} b \overline{b}$ left and W^+W^- right

 $c_{15} b \overline{b}$ and $W^+ W^-$ Channels

• $c_{15} b \overline{b}$ left and W^+W^- right

Nuisance Parameters

• The nuisance parameters showed no preference

