

Marco Taoso

Searching for inelastic dark matter with future laboratory experiments

Based on JHEP 03 (2021) 272 with E. Bertuzzo and JHEP 08 (2022) 100 with A.Scaffidi and E. Bertuzzo

TeVPA 2022 11 August 2022

Motivations

Motivations

Dark photon mediator

Consider a dark photon coupled to two dark sector states splitted in mass: Inelastic DM

Fermionic iDM
$${\cal L}_{int}^{\chi}=ig_d\,ar\chi_2\gamma^\mu\chi_1A_\mu'$$

► Scalar iDM
$$\mathcal{L}_{int}^{\phi} = g_d \left(\partial^{\mu} \phi_1 \phi_2 - \phi_1 \partial^{\mu} \phi_2 \right) A'_{\mu^{\pm}}$$

► SM-DS
$$\mathcal{L}_{int} = e \, \epsilon A'_{\mu} \sum_{f} \bar{f} Q_{f} \gamma^{\mu} f,$$

iDM mass splitting

$$\Delta = \frac{m_2 - m_1}{m_1}$$

Framework

- Almost degenerate dark states -> suppressed DM-nuclei interactions. Evade bounds from direct detection
- ► Coannihilation processes in the early Universe: obtain thermal DM candidate
- Evade CMB and indirect detection constraints
- ► The mediators should be relatively light to explain the DM abundance

Proposed LLPs experiments

Signatures of iDM at LHC

Dominant production channels for masses > O(GeV): Drell-Yan processes

Extend work from: Berlin, Kling PRD 99 (2019) 1

EFT framework

$$\mathcal{L}_{EFT} = \frac{J_{\phi}^{\mu}}{\Lambda^2} \left(\sum_{f_L} c_{f_L} \bar{f}_L \gamma_{\mu} f_L + \sum_{f_R} c_{f_R} \bar{f}_R \gamma_{\mu} f_R \right) + \dots \qquad \phi = \frac{\phi_1 + i\phi_2}{\sqrt{2}} \qquad \delta = \frac{m_2 - m_1}{m_1}$$
$$J_{\phi}^{\mu} = i[(\partial^{\mu} \phi^{\dagger})\phi - \phi^{\dagger}(\partial^{\mu} \phi)] = (\partial^{\mu} \phi_2)\phi_1 - \phi_2(\partial^{\mu} \phi_1)$$

EFT framework

$$\mathcal{L}_{EFT} = \frac{J_{\phi}^{\mu}}{\Lambda^2} \left(\sum_{f_L} c_{f_L} \bar{f}_L \gamma_{\mu} f_L + \sum_{f_R} c_{f_R} \bar{f}_R \gamma_{\mu} f_R \right) + \dots$$

Fixed target experiments

400 GeV proton beam on a fixed target, $\sqrt{s} \approx 28$ GeV

Other relevant experiments: E137, MiniBooNE, LSND

Sensitivity contours

16

Sensitivity contours

Simplified DM models at LHC

Heavy Z' - I

Heavy Z' - II

Conclusions

Explored a dark sector containing inelastic dark matter

This scenario can be tested at future proposed LHC experiments for long-lived particles (FASER, MATHUSLA,...) and beam dump experiments

Dark Photon

Production of dark scalars

