

Direct Detection of TeV—PeV Cosmic Rays in Space

TeVPA 2022 | Kingston, ON Canada | Aug 10, 2022

Chapter I Instruments

DAMPE

DArk Matter *Explorer* (DAMPE)

- Launched in Dec 2015
- Orbit: sun-synchronous, 500 km
- Period ×
- Payload: 1.4 IC
- Power: ~ 400 \
- Data: ~ 12 GByte / day

DArk Matter Particle Explorer (DAMPE)

BGO

- 31 X_0 thickest in space
- e/γ detection up to 10 TeV
- *p*/ions up to **50 GeV 500 TeV**

STK

- Position solution ~50 micron
- γ angular resolution 0.5°-0.1° (GeV-TeV)
- Absolute Charge (Z) identification

PSD

- Z identification up to Ni (Z=28)
- γ anti-coincidence signal

NUD

Additional e/p rejection capability

Electrons (+ positrons)

• Direct observation of spectral break

Andrii Tykhonov University of Geneva, Switzerland

IONOV

Protons

- First direct measurement up to 100 TeV
- Reveals new spectral feature at ~13 TeV

Cosmic Rays (CR) @ DAMPE

He

 Indication of Z-dependent acceleration source of CR?

Many more ongoing analyses: B - C - N - O, Fe, y-ray physics

High Energy Radiation Detector (HERD)

Next-gen Calorimetric detector in Space

5-side tracking & absolute charge ID
3000 and LVSO calorimeter

2027

- 3 DAMPEng LYSO calorimeter
- Target size $55X_0$, $3\lambda_i$
- On boar

Collaboration

High Energy Radiation Detector (HERD)

- 10 GeV 10s TeV • e/γ
- 10s GeV few PeV p/ions
- Lifetime ~ 10 years

15 – 20 m² sr yr Order of magnitude higher exposure compared to previous experiments

Chapter II TeV—PeV Cosmic Rays: Analysis & Challenges

TeV—PeV CR detection in Space: key systematics

Track reconstruction @ DAMPE

Conventional track reconstruction:

- Shower axis from CALO as a seed
- Kalman fitting
 - Combinatorial track finding
 - XZ and YZ fitted separately,
 - ... then combined in 3D tracks

Problems:

- Selection needed to find the ONLY track
- Efficiency drops at high hit multiplicity

At TeV – PeV hit multiplicity increases dramatically ->Track reconstruction & identification is a key challenge!

Andrii Tykhonov University of Geneva, Switzerland

TeVPA 2022

NEW Track reconstruction @ DAMPE

Andrii Tykhonov University of Geneva, Switzerland

hough_stk_h2_x_neg

400

We employ **Convolutional Neural** Networks (CNNs) to boost the accuracy of track reconstruction & identification @ DAMPE

hough_stk_h2_y_pos

CALO & Tracker "images" ³⁰⁰ used as input, regressio₄n type_{onv} 200 of problem — returns particle direction as an output (no track selection needed) 400 0 100 200 300

6

Direct Detection of Teven Ptev Costflic Rays in Space 400

Andrii Tykhonov University of Geneva, Switzerland

Hadronic models & cross-sections

Protons & ions leave ~1/3 of energy in calorimeter

- Cosmic ray energy spectrum measurement rely significantly on hadronic simulations Largest source of large systematics!

 Inelastic Cross-sections uncertainty ~ 10 — 20% Different generators (GEANT4, FLUKA) and models (DPMJET, EPOS, FTFP)

	0.25	
	0.2	
	0.15	
	0.1	
	0.05	
160	0 ₀	20
	0.07	
	0.18	
	0.06	
	0.16	
	0.05 0.14	
	0.04	
	0.1 0.03	
	0.08	
	0.02	
	0.06	
	8:84	
	0.0 2 0	0

Electron / Proton discrimination

Andrii Tykhonov University of Geneva, Switzerland

Classical e/p discrimination based on shower shape: EM showers are "slimmer" & "shorter"

At Terver, Enders penetrate deeper - Finander to sion discriminate from hadronic showers \rightarrow at 10 TeV proton background dominates! New classifier is needed ...

Electron / Proton discrimination – NEW method

Andrii Tykhonov University of Geneva, Switzerland

Direct Detection of TeV—PeV Cosmic Rays in Space *TeVPA 2022*

Summary

- Raise of Calorimetric Experiments in Space
 - <u>DAMPE</u> present, <u>HERD</u> future
 - Bridge gap between Space and ground-based
 - The tool for TeV—PeV CR measurements
 - Hadronic modelling optimisation & implementation in analysis will follow stay tuned!
- Systematics dominated by hadronic modelling, track reconstruction, particle ID Goal: tackle major systematics using ML and improved hadronic modelling Neural – Net electron/hadron classifier developed: 3 – 4 better background rejection • CNN tracking algorithm developed: $> \sim 96\%$ tracking efficiency up to PeV energies •

ERC PeVSPACE

Backup slides

Gamma Rays with DAMPE

New constraints on Dark Matter density profiles

