

Unique Properties of Cosmic H, He, Li and Be Isotopes

Jiahui Wei

Shandong Institute of Advanced Technology

On behalf of the AMS collaboration

09 August 2022

⁴Helium

2L

6

'Be

¹⁰Be

Primary and Secondary Cosmic Rays

Primary cosmic rays (p, ⁴He, C, O, ...) are mostly produced during the lifetime of stars and are accelerated in supernovae shocks.

Secondary cosmic rays (D, ³He, Li, Be, B, ...) are produced by the collisions of primary cosmic rays and interstellar medium.

TeVPA 2022 - H, He, Li, Be Isotopes by AMS - Jiahui WEI

Deuterium and Helium Isotopes

- Helium nuclei are the second most abundant nuclei in cosmic rays.
- D and ³He are mostly produced by the fragmentation of ⁴He:

simpler comparison with propagation models than with heavier secondary/primary ratios.

- Smaller cross section of He: D/⁴He and ³He/⁴He probe the properties of diffusion at larger distances
- Different A/Z ratios of D and ³He allow to disentangle kinetic energy and rigidity dependence of propagation.

Lithium Isotopes

- Secondary produced by the spallation of heavier nuclei.
- Some studies show lithium flux higher than model prediction:
 - Uncertainty in the production cross-section? (Weinrich et al. A&A, 2020)
 - Primary lithium? (Boschini et al. APJ, 2020)
- Studies of lithium isotopic composition may help to investigate the mechanism.

Boschini et al. APJ, 2020

Beryllium Isotopes

- ¹⁰Be \rightarrow ¹⁰B, t_{1/2} \approx 1.38 My: "radioactive clock"
- Recent studies of cosmic ray propagation using Be/B flux ratio:
 - Evoli et al. PRD, 2020
 - Weinrich et al. A&A, 2020
- ¹⁰Be/⁹Be provides more sensitive measurement of the age of cosmic rays.
- AMS is able to measure Be isotopes up to 12 GeV/n (~30 GV).

Measurement of Isotopes with AMS-02

$$M=\frac{RZ}{\beta\gamma}$$

- *R* measurement :
 - Tracker, Δ*R*/*R*~10% at 10 GV
- β measurements:

	E _{kn} range	$\Delta eta / eta$	
	(GeV/n)	(Z=1)	(Z=4)
TOF	(0.5, 1.2)	~3%	~1.5%
RICH-NaF (n=1.33)	(0.8, 4.0)	~0.3%	~0.15%
RICH-AGL (n=1.05)	(3.0, 12)	~0.1%	~0.05%

Measurement of Isotopes with AMS-02

 $\Delta M \sim 1$ a.m.u. \rightarrow Unable to do event-by-event isotope identification

Examples of Mass Template Fit for Z=1

- Isotopic abundances obtained from mass template fit carried out in difference energy ranges.
- Mass templates are based on Monte Carlo simulation validated by data.

Examples of Mass Template Fit for Z=4

- Isotopic abundances obtained from mass template fit carried out in difference energy ranges.
- Mass templates are based on Monte Carlo simulation validated by data.

Validation of Fragmentation Cross Sections

- The fragmentation background is not negligible.
- The knowledge of nuclei interaction cross sections is important.
- Using AMS material as the target, the fragmentation cross sections (Q. Yan et al. 2020) and isotopic cross sections can be validated.

Carbon nuclei fragmenting to beryllium isotopes in TRD+TOF

²H Flux

- Based on 9 million deuteron events
- Combined three analyses using TOF, RICH-NaF and RICH-AGL.

³He Flux

²H/⁴He and ³He/⁴He Flux Ratios

Evolution with Time

Lithium Isotopic Fluxes

• Based on 0.8 million lithium events.

→ First measurement of ⁶Li and ⁷Li fluxes above 0.5 GeV/n and up to 12 GeV/n.

Lithium Isotopic Flux Ratios

- ⁶Li/⁷Li flux ratio and comparison with previous experiments:
- → Extend the measurement of ⁶Li/⁷Li flux ratio above 1 GeV/n to 12 GeV/n

Beryllium Isotopic Fluxes

- Based on 0.4 million beryllium events.
- → First measurement of ⁷Be, ⁹Be and ¹⁰Be fluxes above 0.5 GeV/n and up to 12 GeV/n.

17

Beryllium Isotopic Flux Ratios

- ⁹Be/⁷Be and ¹⁰Be/⁹Be flux ratios and comparison with previous experiments:
- \rightarrow First measurement of
- ⁹Be/⁷Be flux ratios above 0.5 GeV/n.
- ¹⁰Be/⁹Be flux ratios above 2 GeV/n.

Fitting the ¹⁰Be/⁹Be Flux Ratios

 Galactic diffusion halo size L fitted on AMS02 data with an analytical formula:

(D. Maurin *et al.*, arXiv:2203.07265)

- Precision on *L* from AMS02 data $\Delta L_{AMS02} \sim 0.2$ kpc.
- Error dominated by uncertainty from production cross-section (1 kpc).

Conclusions

- Isotope studies give unique information on propagation (D, ³He), production mechanism (^{6,7}Li, ^{7,9}Be) and independently measure the age of cosmic rays (^{9,10}Be).
- AMS-02 measured cosmic-ray isotopes based on 9M deuteron, 60M ³He, 0.8M lithium and 0.4M beryllium events.
- The following preliminary results were presented:
 - D and 3 He fluxes in the rigidity range from 2 GV to 20 GV and 15 GV .
 - The ratio of D and ³He to ⁴He are compatible with a power law function.
 - Time evolution of D and ³He fluxes, similar to those of ⁴He.
 - Li and Be isotopic fluxes, and their ratios in the energy range of 0.5 GeV/n to 12 GeV/n.