

Testing the universality of cosmic-ray nuclei from protons to oxygen with AMS-02

Based on *Phys.Rev.D* 105 (2022) 10, 103033 *Phys.Rev.D* 103 (2021) 10, 103016

Michael Korsmeier, Alessandro Cuoco

Astroparticle messenger

Blagar

Astroparticle messenger

Blazar

Stockholm University and OKC

- Introduction
- Modeling CR data from Li to O
- Conclusions

Testing CR universality with data from p to O

Modeling cosmic-ray propagation

Stockholm University and OKC

Modeling cosmic-ray propagation

Modeling cosmic-ray propagation

Cosmic-ray propagation models

$$rac{\mathrm{d}\psi}{\mathrm{d}t} = q(oldsymbol{x},p) + oldsymbol{
abla} \cdot (D_{xx}oldsymbol{
abla}\psi - oldsymbol{V}\psi) + rac{\partial}{\partial p}p^2$$

Stockholm University and OKC

We explore 2 different setups for CR propagation:

Cosmic-ray propagation models

We explore 2 different setups for CR propagation:

DIFF.BRK

$$\frac{\mathrm{d}\psi}{\mathrm{d}t} = q(\boldsymbol{x}, p) + \boldsymbol{\nabla} \cdot (D_{xx} \boldsymbol{\nabla} \psi - \boldsymbol{V} \psi) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi - \frac{\partial}{\partial p} \left(\frac{\mathrm{d}p}{\mathrm{d}t} \psi - \frac{p}{3} \boldsymbol{\nabla} \cdot \boldsymbol{V} \psi \right) - \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi$$

Stockholm University and OKC

INJ.BRK+vA

Cosmic-ray propagation models

We explore 2 different setups for CR propagation:

DIFFRRK

Stockholm University and OKC

INJ.BRK+vA

Systematic uncertainties in the fragmentation cross sections are larger than those in the measured CR spectra!

see also [Maurin+, 2022] [Talk by De la torre Luque]

Michael Korsmeier

6 / 19

Systematic uncertainties in the fragmentation cross sections are larger than those in the measured CR spectra!

see also [Maurin+, 2022] [Talk by De la torre Luque]

including ghosts

direct

Michael Korsmeier

6 / 19

Systematic uncertainties in the fragmentation cross sections are larger than those in the measured CR spectra!

see also [Maurin+, 2022] [Talk by De la torre Luque]

We perform a global fit and profile over nuisance parameters in the most relevant fragmentation cross sections.

than those in the measured CR spectra!

relevant fragmentation cross sections.

Michael Korsmeier

6 / 19

Introduction

- Conclusion

Modeling CR data from Li to O

Testing CR universality with data from p to O

Michael Korsmeier

7 / 19

Results of the fits from Li to O

Stockholm University and OKC

Results of the fits from Li to O

Stockholm University and OKC

Cross-section nuisance parameters

Storkholm University and OKC

ສ

Joco, 2021

The default cross section parametrization is "GALPROP 12"

DIFF.BRK is compatible with the default cross section

Li cross section are increased by ~25% see also [Maurin+, 2022]

Cross-section nuisance parameters

Storkholm University and OKC

ື່

2021

Constraints on the size of the diffusion halo

The combination of B and Be data allows to constrain z_h

[see also talk by Jiahui Wei]

10/19

AUGUSC 8-12 Queen's University KINGSCON, ON \square NC

- Introduction

- Conclusion

Modeling CR data from Li to O

Testing CR universality with data from p to O

Motivation

PHYSICAL REVIEW LETTERS

Observation of the Identical Rigidity Dependence of He, C, and O Cosmic Rays at High Rigidities by the Alpha Magnetic Spectrometer on the International Space Station

[see also talk by Yi Lia]

A separate issue: *p* and He slopes

We always allow for a different injection slope of protons and all other nuclei.

We always allow for a different injection slope of protons and all other nuclei.

Suggested explanations:

- Different source populations (e.g. hydrogen rich local sources)
- Time-dependent shock evolution (can lead to Z/A dependence)
- CR spallation

- Naive default approach
- Source approach: free He inj
- Propagation approach (inhomogeneous diffusion): free D_{0,light}

Additional freedom breaks universality between He, C and O

Analysis strategy

- Naive default approach
- Source approach: free He inj
- Propagation approach (inhomogeneous diffusion): free D_{0,light}

Additional freedom breaks universality between He, C and O

Analysis strategy

CR primary spectra - DIFF.BRK

Stockholm University and OKC

Michael Korsmeier

In the default setup the oxygen flux is not well fitted!

CR secondary spectra - **DIFF.BRK**

Secondary spectra are consistent!

Michael Korsmeier

Ω 2021 Cuoco, ЯҚ,

Results - DIFF.BRK setup

Stockholm University and OKC

Results - DIFF.BRK setup

Stockholm University and OKC

Results - DIFF.BRK setup

Stockholm University and OKC

Propagation effects (spallation, energy losses, and contributions from secondary components) are different for helium, carbon and oxygen.

Stockholm University and OKC

Propagation effects (spallation, energy losses, and contributions from secondary components) are different for helium, carbon and oxygen.

Stockholm University and OKC

In order to measure the same spectral slope at the level of the fluxes, the injection slopes have to be different!

Secondary CR nuclei are consistent with the traditional CR diffusion models

Combination of nuclei from p to O reveal a violation of universality **Option 1: Different injection slopes for He and C, O Option 2: Inhomogeneous diffusion**

Small halo heights of $z_h < 3$ kpc are disfavored and the diffusion coefficient is well constrained above 10 GeV

Summary and conclusions

DIFFUSION

ASCrophysics **CICLE** rev pari

Thank you for your attention!

Light vs. heavier cosmic rays

Stockholm University and OKC

Cuoco, 2021 b]

[MK,

Michael Korsmeier

see also [Johannesson+, 2016]

Light vs. heavier cosmic rays

Stockholm University and OKC

Cuoco, 2021 b]

[MK,

Light vs. heavier cosmic rays

Stockholm University and OKC

Cuoco, 2021 b]

[MK,

Michael Korsmeier

21/19

We found that the following scenarios do not allow to restore universality:

- Free secondary normalizations
- Free inelastic cross sections
- Free gas density

Further scenarios

CR propagation models

THIS WORK GALPROP	DIFF.E
analytic [Evoli+; 2019] [Schroer+; 2021]	
USINE (semi-analytic) [Génolini+; 2019] [Weinrich+; 2020] [Maurin+; 2022] [Vecchi+; 2022]	~SLI

DRAGON [De la Torre Luque+; 2021] [De la Torre Luque+; 2022]

GALPROP

[Boschini+;2018] [Boschini+;2019] [Boschini+;2020] [Boschini+;2022]

Stockholm University and OKC

THIS WORK GALPROP

[Evoli+; 2019] [Schroer+; 2021]

[Génolini+; 2019] [Weinrich+; 2020] [Maurin+; 2022] [Vecchi+; 2022]

> [De la Torre Luque+; 2021] [De la Torre Luque+; 2022]

[Boschini+;2018] [Boschini+;2019] [Boschini+;2020] [Boschini+;2022]

Stockholm University and OKC

Universality between He and C, O is broken

Focus on CRs above 10 GV

Focus on CR secondaries Hint for different injection

Focus on CR secondaries Hint for different injection

> **Enormous freedom** for CR primaries.

Parameter constraints

The diffusion coefficient is well constrained above 10 GV

25/19

Example: gas density

Secondary over primary: B/C

Impact on B/C is a normalization while for oxygen it changes the slope

Stockholm University and OKC

Correlation in the cosmic-ray data of AMS-02

[Heisig, MK, Winkler; PRR; 2020]

The AMS-02 collaboration does not provide the **correlation** of the flux data points

Stockholm University and OKC

We model the covariance matrix by splitting the systematic uncertainties into separate contributions and attributing a correlation length to each contribution

> The inclusion of correlation does not change our conclusions!

$$\mathcal{V}_{ij} = \sigma_i \sigma_j \exp\left(-\frac{1}{2} \left(\frac{R_i - R_j}{\ell_{\text{corr}}}\right)^2\right)$$

Comparison: Constraints on the diffusion halo

See also: [Weinrich+ 2020]

Comparison: Li production cross sections

GALPROP cross sections: Li is rescaled by 1.26

Stockholm University and OKC

DRAGON2 cross sections: Li is rescaled by 0.97

See also: [Weinrich+ 2019; Boschini+ 2020]

29/19