
L. Foffano, V. Vittorini, M., Tavani, E. Menegoni

TeVPA2022 conference – Kingston (ON, Canada) - 8/08/2022

AGNs and their large-scale structures

A simplified view

Adapted from Urry&Padovani+1995

The **main components and large-scale structures** of an active galactic nucleus (AGN) are, for example:

- Central supermassive black hole (BH)
- Accretion disk
- Dusty torus
- Broad-line region (BLR)
- Narrow-line region (NLR, or extended narrow-line

region, ENLR)

The zoology of AGNs is very complex:

some of these structures change with the evolution history of the AGN

Blazars

Blazars are AGNs with a relativistic jet pointing towards the line of sight of the observer.

They are subdivided in:

- Flat Spectrum Radio Quasars (FSRQs)
 - Young evolution stage, rich environment,
 - High accretion rate $\dot{M} \ge 1$
 - High electromagnetic output
 - Detectable optical absortion / emission lines
- BL Lac objects
 - Late evolution stage, scarce environment, with a slow population evolution
 - Low accretion rate $\dot{M} \ll 1$
 - Energy extracted from the rotational energy
 - Non-thermal continuum overwhelms the thermal emission

e.g. Cavaliere&D'Elia+02

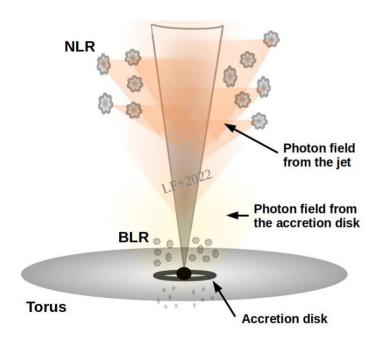
The evolution of BL Lac objects and their large-scale structures

BL Lac objects: non-thermal continuum overwhelms the thermal emission

Some standard methods investigating the optical spectra do not always work, due to the dominant radiation of the jet

→ An indirect method may do the work!

Question 1:


Which large-scale structures are present in BL Lac objects?

Question 2:

Do the large-scale structures survive to the evolution in BL Lac objects?

Foffano L., Vittorini V., Tavani M., Menegoni E., 2022, ApJ, 926, 95

Let's assume the presence of a NLR in a BL Lac object.

The NLR may be *illuminated* by the relativistic jet and produce a local bath of optical-UV **seed photons**.

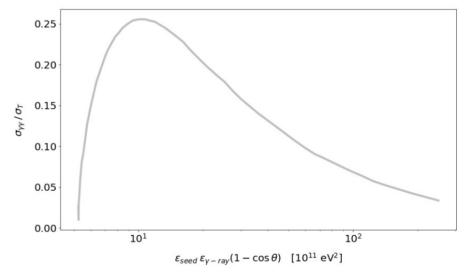
Gamma rays of the jet may interact with these seed photon field via $\gamma-\gamma$ pair production, producing **absorption features** in the γ -ray spectrum of the BL Lac object.

Gamma-gamma pair production

The $\gamma\gamma$ interaction takes place when two photons collide and produce an electron-positron pair.

In our case, we will consider a gamma-ray photon of the jet γ_{gamma} interacting with a seed photon γ_{seed} at ~optical-UV energies:

$$\gamma_{gamma} + \gamma_{seed} \rightarrow e^+ + e^-$$


Important features:

Precise threshold

$$\epsilon_{\rm seed} \cdot \epsilon_{\gamma - {\rm ray}} \ge \frac{2\left(m_e c^2\right)^2}{1 - \cos \theta} \sim \frac{5.2 \cdot 10^{11} \,\mathrm{eV}^2}{1 - \cos \theta}$$

- Maximum cross-section very close to the energy threshold
- Extension appreciable over less than 2 orders of magnitute in energy

Assumption: mono-energetic isotropic seed photon field

γγ cross section as a function of the energy of the incoming photons, in units of the Thomson cross section

→ see F.Aharonian – VHE Cosmic Gamma Radiation

Luca Foffano TeVPA2022 - 8/08/22

The interaction reduces the observed flux

$$I_{\rm out} = I_{\rm in} e^{-\tau_{\gamma\gamma}}$$

Where the absorption factor

$$\tau_{\gamma\gamma} = n_{\rm seed} \cdot \sigma_{\gamma\gamma} \cdot R \simeq 0.68 \cdot n_{\rm seed,4} \cdot (R/100 \text{ pc})$$

depends on:

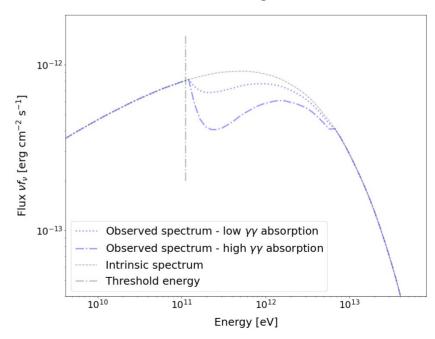
- average photon density n_{seed} of the seed photons
- size **R** of the path of gamma rays into the seed photon field
- cross-section, and then on the energy of the interacting photons

We may indirectly constrain the physical properties of the NLR of the BL Lac object!

The interaction reduces the observed flux

$$I_{\text{out}} = I_{\text{in}} e^{-\tau_{\gamma\gamma}}$$

Where the absorption factor


$$\tau_{\gamma\gamma} = n_{\rm seed} \cdot \sigma_{\gamma\gamma} \cdot R \simeq 0.68 \cdot n_{\rm seed,4} \cdot (R/100 \text{ pc})$$

depends on:

- average photon density n_{seed} of the seed photons
- size **R** of the path of gamma rays into the seed photon field
- cross-section, and then on the energy of the interacting photons

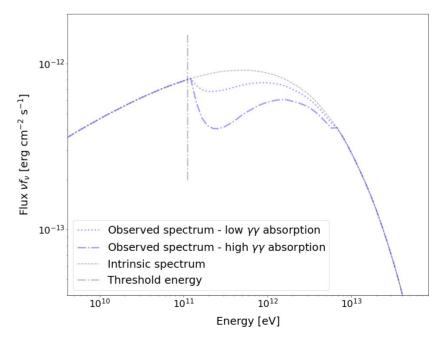
We may indirectly constrain the physical properties of the NLR of the BL Lac object!

Theoretical absorption feature

Experimental application

Foffano L., Vittorini V., Tavani M., Menegoni E., 2022, ApJ, 926, 95

Experimentally, we may apply the inverse procedure:

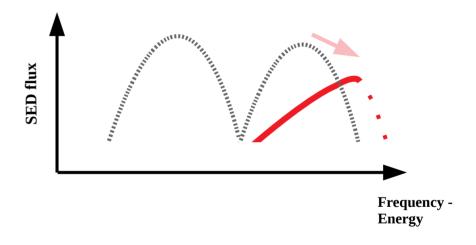

• Identify a possible absorption feature that can be explained by the χ-χ cross section with

$$I_{\rm out} = I_{\rm in} e^{-\tau_{\gamma\gamma}}$$

- Extract the product of the energy of the interacting photons from the maximum of the interaction
- Extract the photon column density, that is the product between:
 - average photon density \mathbf{n}_{seed} of the seed photons
 - size R of the path of gamma rays into the seed photon field

$$\tau_{\gamma\gamma} = n_{\rm seed} \cdot \sigma_{\gamma\gamma} \cdot R \simeq 0.68 \cdot n_{\rm seed,4} \cdot (R/100 \text{ pc})$$

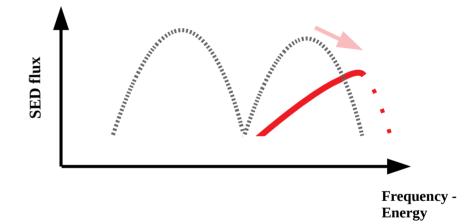
Theoretical absorption feature



Best candidates to detect absorption features at gamma rays

The best targets to detect gamma-ray absorption features are sources that:

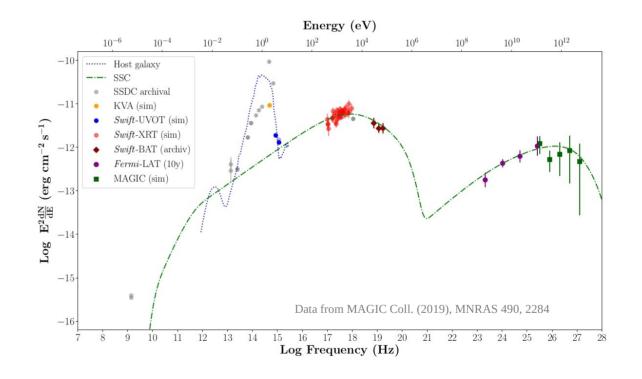
- 1) are **well detected in gamma rays**(especially from 100 GeV up to ~TeV)
- 2) show **~hard intrinsic spectra** extending up to hundreds GeV (EBL absorption)
- 3) show a *clean* spectral shape in that band, (without contamination of other spectral features)
- 4) and show a *relatively stable* flux at those energies (at least during the observations)



Best candidates to detect absorption features at gamma rays

The best targets to detect gamma-ray absorption features are sources that:

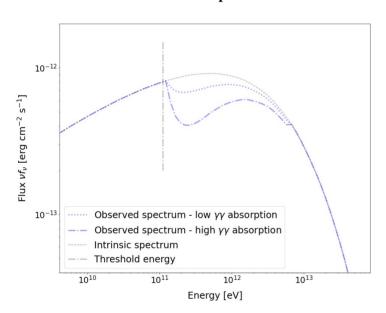
- 1) are **well detected in gamma rays**(especially from 100 GeV up to ~TeV)
- 2) show **~hard intrinsic spectra** extending up to hundreds GeV (EBL absorption)
- 3) show a *clean* spectral shape in that band, (without contamination of other spectral features)
- 4) and show a *relatively stable* flux at those energies (at least during the observations)

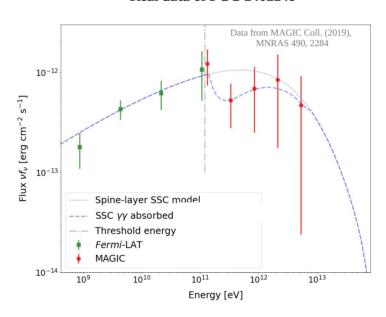


High-synchrotron peaked BL Lac objects **HBLs** and extreme HBLs (**EHBLs**, or extreme blazars) are the best candidates!

Our first candidate

Name	PGC 2402248 or 2WHSP J073326.7+515354
Туре	extreme blazar (EHBL)
Redshift	0.065 Becerra+2020
VHE detection	MAGIC MAGIC Coll. (2019), MNRAS 490, 2284
Principal investigators	L.Foffano, J.G.Becerra




Theory vs real data

Foffano L., Vittorini V., Tavani M., Menegoni E., 2022, ApJ, 926, 95

Theoretical absorption feature

Real data of PGC 2402248

The real data are compatible with the absorption produced by a NLR/ENLR

photon column density $K_{seed} = 130 \cdot 10^4 \text{ pc/cm}^3$

Open points

This phenomenon may be temporary

- The clouds of material creating the seed photon fields may change over time
- The luminosity of the accretion disk / jet may change over time
- The gamma-ray emission of the jet may change over time
 - → verify variable sources!

→ change the absorption factor

It may be more complex:

• If the seed photon field is not **mono-energetic**, the absorption feature may be more difficult to be identified in the BL Lac spectrum. → change the absorption feature *shape*

It may be not detectable:

• If the opacity of the absorbing region is not strong enough, the low-resolution of the gamma-ray spectral points of the current observatories may not allow for the identification of such a feature

Luca Foffano TeVPA2022 - 8/08/22

Conclusions

Context:

The identification of large-scale structures (e.g. a narrow-line region, NLR) in BL Lac objects is complicated by the overwhelming non-thermal continuum in the optical spectrum

→ standard methods are usually not appliable

Method:

We apply the γ-γ pair production interaction to propose a new **indirect method** to suggest the presence of large-scale structures in BL Lac objects.

The presence of a hypothetical NLR on the trajectory of the relativistic jet would eventually cause a reduction of the observed flux of gamma rays in the spectrum of the BL Lac object. The corresponding **absorption feature** provides indirect estimations on the properties of the NLR.

Results:

- Promising application to real data of an extreme blazar named PGC 2402248
- Further studies ongoing to confirm this hypothesis in other sources \rightarrow LF+ in preparation
- May it be related to **neutrino production**? → under investigation

Notes:

- The best candidates to apply this method are **HBLs and EHBLs**
- This phenomenon may be temporary and/or **depend on the activity state** of the source
- It may be identified in archival data!

More details in: Foffano L., Vittorini V., Tavani M., Menegoni E., 2022, ApJ, 926, 95