Gone with the breeze

A subsonic solution to the Fermi bubbles problem

Olivier Tourmente,

Donna Rodgers-Lee,

Andrew Taylor

TeVPA (Kingston), 8-12 August 2022

Arxiv: https://arxiv.org/abs/2207.09189

HELMHOLTZ

Fermi bubbles: Features

- > 2 Galactic bubbles in the gamma ray energy range
- > Height: b pprox 50°, width: l pprox 40°
- > Hard spectrum: $\frac{dN}{dE} \propto E^{-\alpha}$, with $\alpha \approx 2$
- Constant brightness intensity and sharp edges
- > Where ? When ? How ?

Ackermann et al. (2014)

Fermi bubbles: Emission mechanism model

- > Leptonic jet model
 - CR are electrons
 - $_{\bullet}~ au_{
 m loss} \sim$ 1-3 Myr
 - Highly supersonic velocity
 - AGN jet

- > Hadronic wind model
 - CR are protons
 - $au_{\mathsf{loss}} \sim \mathsf{several} \; \mathsf{Gyr}$
 - Supersonic velocity
 - Starburst or AGN wind

Fermi bubbles: Decelerating velocity profile

 UV absorption line observations of cold clouds

Source: NASA

- $v_{
 m max} pprox$ 300 km s $^{-1}$
- > v(1 kpc) \approx 180 km s $^{-1}$ (Sofue 2022 PASJ)

Continuous deceleration:

Subsonic profile ?

Thermally-driven outflow solutions

> Mass and momentum conservation,

 $\nabla \cdot (\rho \mathbf{V}) = S_{\rho}$

$$\nabla \cdot (\rho \mathbf{v} \mathbf{v} + p \mathbf{I}) = -\rho \nabla \Phi$$

 Thermally-driven spherically symmetric outflow (Parker 1958)

$$\frac{1}{v}\frac{dv}{dr} = \frac{1}{r}\left(\frac{2c_s^2 - \frac{rd\Phi}{dr}}{v^2 - c_s^2}\right)$$

- > $r_c \equiv r \frac{d\Phi}{dr} = 2c_s^2$, is the critical radius $r < r_c \rightarrow 2c_s^2 < r \frac{d\Phi}{dr}$
 - $\label{eq:rate} r > r_c \to 2c_s^2 > r \frac{d\Phi}{dr}$

Analogy with Laval nozzle:

$$\frac{1}{v}\frac{dv}{dr} = \frac{1}{A}\frac{dA}{dr}\frac{1}{(M^2 - 1)}$$

1.	Subsonic Flow: $M \le 1$ and $dA \le 0$, then $dV \ge 0$: indicating an accelerating flow in a conversing	
	channel.	
2.	Supersonic Flow: $M \ge 1$ and $dA \le 0$, then $dV \le 0$: indicating an decelerating flow in a converging channel.	\rightarrow
3.	Subsonic Flow: $M \le 1$ and $dA \ge 0$, then $dV \le 0$: indicating an decelerating flow in a diverging channel.	\rightarrow
4.	Supersonic Flow: $M \ge 1$ $dA \ge 0$, then $dV \ge 0$: indicating an accelerating flow in a diverging channel.	

E. Pardyjak (U. Utah)

$$\begin{split} \frac{dA}{dr} &< 0 \rightarrow 2c_s^2 < r\frac{d\Phi}{dr} \\ \frac{dA}{dr} &> 0 \rightarrow 2c_s^2 > r\frac{d\Phi}{dr} \\ \frac{dA}{dr} &= 0 \rightarrow 2c_s^2 = r\frac{d\Phi}{dr} \end{split}$$

Thermally-driven outflow solutions

> Mass and momentum conservation,

$$\nabla \cdot (\rho \mathbf{V}) = S_{\rho}$$

$$\nabla \cdot (\rho \mathbf{v} \mathbf{v} + p \mathbf{I}) = -\rho \nabla \Phi$$

 Thermally-driven spherically symmetric outflow (Parker 1958)

$$\frac{1}{v}\frac{dv}{dr} = \frac{1}{r}\left(\frac{2c_s^2 - \frac{rd\Phi}{dr}}{v^2 - c_s^2}\right)$$

> $r_c \equiv r \frac{d\Phi}{dr} = 2c_s^2$, is the critical radius

•
$$r < r_c \rightarrow 2c_s^2 < r \frac{d\Phi}{dr}$$

 $\label{eq:rate} r > r_c \to 2c_s^2 > r \frac{d\Phi}{dr}$

- > Transonic solution \rightarrow Wind
- > Subsonic solution \rightarrow Breeze

Hydrodynamics simulations

- > Isothermal Galactic halo
- > Hydrostatic density distribution:

$$\rho = \rho_0 \exp\left(-\frac{\Phi}{c_s^2}\right)$$

with $\Phi = \Phi_{\rm bulge} + \Phi_{\rm disc} + \Phi_{\rm halo}$

> Maximise the outflow velocity:

$$r_c = 1 \text{ kpc} \Rightarrow kT \approx 500 \text{ eV}$$

 $\Rightarrow c_s \approx 250 \text{ km s}^{-1}$

The fitting range, for R = 2-21 kpc, is provided by Watkins et al. (2019)

Galactic breeze profile

Cosmic rays transport code

The subsonic velocity profile, simulated with the HD code, is included in a CR transport code.

Gamma-rays emission

- > CRs are injected with a luminosity of $L_{CR} = 6 \times 10^{41}$ GeV s⁻¹
- > The γ rays emissions are compatible with observations provided by Fermi-LAT instruments (Ackerman et al. (2014 APJ)). Howerver the bubbles appear wider.

Prediction for CTA/SWGO measurements

- CTA is the next generation ground-base gamma ray intruments. (20 GeV to 300 TeV)
- > At $b \sim 50^{\circ}$ the energy flux shoud be between $8 \times 10^{-8} 1.3 \times 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$.

Tourmente et al. (2022)

Conclusions

- > A subsonic profile can reproduce the observed gamma ray emission
- Match well with the velocity evolution observed from cold clouds but magnitude is too small
- > The simulated bubble is wider than what has been observed
- The outflow profile is strongly dependent on the gravitational potential and the ambient temperature.