

First Science Results from the LST prototype for CTA

David Green (Max Planck Institute for Physics) on behalf of the CTA LST Project, 09/08/2022

CTA LST Collaboration

- Learn more at : <u>https://www.cta-</u>

Cherenkov Telescope Array Observatory

- CTA will consist of 2 arrays
 - Northern array La Palma, Spain
 - Southern array Paranal, Chile

- Three Telescope Types:
 - LST Large-Sized Telescope

• MST - Medium-Sized Telescope

• SST - Small-Sized Telescope

Veather Station	٠
Stellar Photometer	
Raman LIDAR	
Other Calibration Devices	

Cherenkov Telescope Array Observatory

- CTA will consist of 2 arrays
 - Northern array La Palma, Spain
 - Southern array Paranal, Chile

- Three Telescope Types:

LST - Large-Sized Telescope

• MST - Medium-Sized Telescope

• SST - Small-Sized Telescope

Veather Station	•
tellar Photometer	
aman LIDAR	
Other Calibration Devices	

Performance of the CTAO Northern Array

- LSTs dominate CTAO sensitivity below 150 GeV
- Ideal for fast transients and soft sources

LST for CTA: The largest telescopes and the lowest energies

- 23 m diameter: over 400 m² mirror area
- Targeting an energy threshold <u>~20 GeV</u>
- Stereo observations at lowest energy ever observed from ground
- Overlap with satellites but with <u>collection</u> areas >10⁴ times larger
- Ability to reposition to any point in the sky within 20 seconds: Transients

Status of the Project

- Construction ahead of CTAO ERIC formation
- LST-1 first telescope at CTA site:
 - Telescope inaugurated in 2018
 - Under commissioning: Covid-19, supplychain crisis, volcano, inflation...
 - ~800 hours of data taken since Jan 2020
 - Data-taking efficiency 70% in dark time, not yet reaching 95% requirement, mostly due to incomplete control software
- LST-2, LST-3, and LST-4: under production
- LST-South: Partially funded

erenkov
lescope
ray

Status of the Project

- Construction ahead of CTAO ERIC formation
- LST-1 first telescope at CTA site:
 - Telescope inaugurated in 2018
 - Under commissioning: Covid-19, supplychain crisis, volcano, inflation...
 - ~800 hours of data taken since Jan 2020
 - Data-taking efficiency 70% in dark time, not yet reaching 95% requirement, mostly due to incomplete control software
- LST-2, LST-3, and LST-4: under production
- LST-South: Partially funded

8

Performance: Sensitivity

- Able to measure energy down to 50 GeV
- Roughly 1.5x less sensitive than MAGIC Stereoscopic Telescopes
 - Consistent with single telescope performance vs Stereoscopic system
 - Single telescope system have higher backgrounds

LST-1 is Ready for Science

- We are about to publish the LST **Performance** paper
- Confident in the understanding of our telescope
- A number of publications are already in the pipeline

Crab Nebula and Pulsar

- Data down to 25 GeV, a first for LST

First VHE-detect Nova: RS Ophiuchi

Credit: David A. Hardy

- LST-1, 4-day average
- MAGIC, 4-day joint data (Acciari 2022)
- H.E.S.S. Aug 9 + 13 SEDs (<u>H.E.S.S.</u> <u>Collab 2022</u>)
- Consistent SEDs

See talk by Y. Kobayashi Thursday

MAGIC results from Acciari et al. 2022 H.E.S.S. results from H.E.S.S. Collaboration 2022.

First VHE-detect Nova: RS Ophiuchi

- Nice connection between LST-1 and Fermi-LAT data
- Energy threshold already competitive with MAGIC (~45 GeV)
- Paper already in progress

LHAASO J2108+5157

- LAT counterpart, but soft spectrum (pulsar?)
- 91 hour observation, no detection but relevant upper limits.

• Cao et al. 2021: PeVatron, reported to be point-like (<0.26 deg). No X-ray or VHE counterpart, possible

See talk by J. Juryšek Wednesday

erenkov
lescope
ray

BL Lac Flare 2021: CTA's First ATEL

[Previous | Next | ADS]

Detection of very-high-energy gamma-ray emission from BL Lac with the LST-1

ATel #14783; Juan Cortina for the CTA LST collaboration

on 13 Jul 2021; 21:03 UT Credential Certification: Juan Cortina (Juan.Cortina@ciemat.es)

Subjects: TeV, VHE, Request for Observations, AGN, Blazar, Transient

Referred to by ATel #: 14820, 14826, 14839

У Tweet

The LST-1 telescope has observed an increase in the very-high-energy (VHE; >100 GeV) gamma-ray flux from BL Lacertae (RA=22:02:43.3, DEC=+42:16:40, J2000.0). The preliminary offline analysis of the LST-1 data taken on 2021/07/11 (MJD 59406), triggered by an increase of the optical flux (see ATEL #14773 and references therein), has been detected with a significance of 8 sigma with a differential flux of 1.3 +/- 0.2 10^-9 cm-2 s-1 TeV-1 (25% of the Crab Nebula) at 100 GeV. Note though that this is the result of a quicklook analysis and the data were taken under non-optimal weather conditions (atmospheric transmission at 9km of ~50-60%), hence this flux measurement is a lower bound on the true flux. The LST-1 observations were performed during commissioning which began in 2018. LST-1 is a prototype of the Large-Sized Telescope for the Cherenkov Telescope

- Fast response by LST and CTAC
- ATEL was Published under 48 hours of observation with confirmation and cross-check

BL Lac Flare 2021

- IBL at z=0.069
- August 8th 2021: High state >1 crab for E<300 GeV
- Soft spectrum allows to extract spectral point at **30 GeV in < 2** hour observation
- Two separate analyses are in good agreement

BL Lac Flare 2021

- ~ 5x brighter than Crab at 30 GeV
- De-absorbed EBL spectra still shows curvature
- Intra-night variability being examined
- Explore LST capability for short-time scale variability and Lorentz invariance studies

TeV Blazars

TeV Blazars

- Following GRBs with triggers from Swift, GBM, and LAT
 - No detection
- Also following Neutrino triggers, Galactic transients, and FRBs
- Automatic repositioning expected in second half of 2022

GRB #	Zenith Angle (deg)	Tobservation - To (minute
1	40	1320
2	45	970
3	51	119
4	59	39
5	56	1072
6	61	1302
7	6	57
8	41	588
9	65	60
10	62	1138
11	59	33

Conclusions

- The prototype telescope LST-1 was inaugurated at CTA Northern Array in La Palma in 2018.
 - So far as tested: performance of the telescope expected follows CTAO requirements.
 - Already taking scientific data: first papers coming soon.
- Performance and data analysis well understood
 - Promising observations and results ranging from Galactic: Crab(s), RS Oph, LHAASO J2108, to Extragalactic: BL Lac, other TeV Blazars

ļ