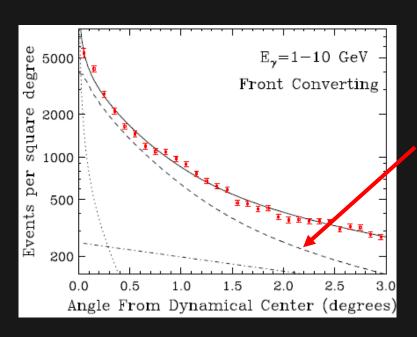
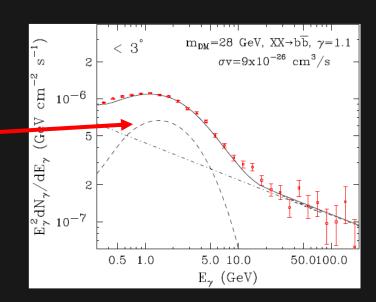


Assessing the Impact of Hydrogen Absorption on the Characteristics of the Galactic Center Excess


Martin Pohl with Oscar Macias and Chris Gordon


Introduction

Back in 2009 Lisa Goodenough and Dan Hooper published on the arXiv

Dark matter

Introduction

Later analysis confirmed that there indeed is an excess.

Questions remain:

- Is the cosmic-ray induced diffuse emission properly modelled?
- What is the spectrum of the excess?
- What is the intensity distribution of the excess?

Intensity depends

- 1. on the cosmic-ray flux
- 2. and the density of interstellar gas and radiation,
- 3. all integrated along the line of sight

Gas density is the decisive input for modelling

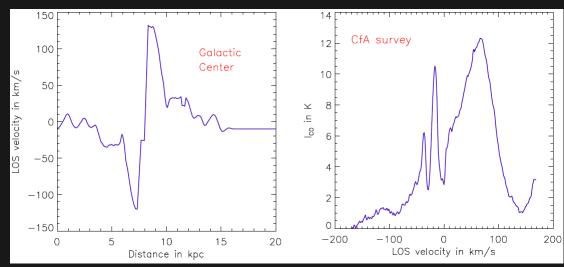
and is measured through line emission and its Doppler shift

Normal assumption: circular rotation in the Milky-Way galaxy

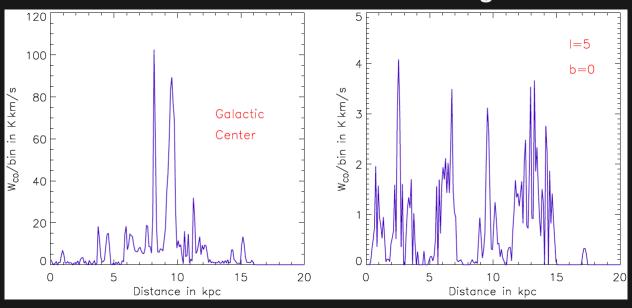
$$V_{LSR}(l, b, P) = \left[\frac{R_0}{r}V(r) - V(R_0)\right] \sin l \cos b$$

Zero velocity toward the Galactic center (I=0)

Standard assumption of circular motion does not work for inner Galaxy


no velocity resolution

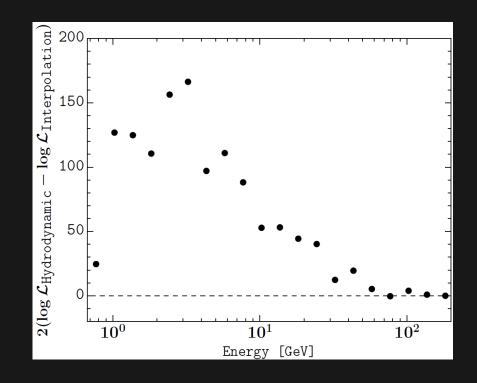
Simulate gas flow in barred gravitational potential with SPH (Bissantz et al.2003)


→ non-radial flow (Pohl et al. 2008)

CO deconvolution for 2 lines of sight

Newer models available, e.g. Mertsch et al.

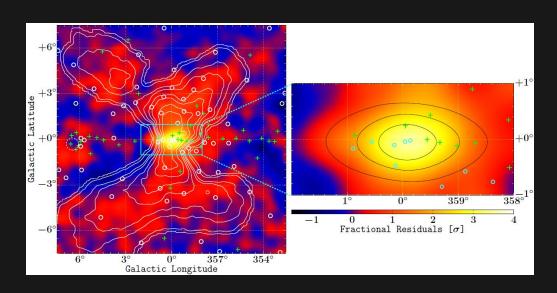
2018 LAT reanalysis


Improved map of H₂

Fit to data in 15° x 15° GC field

Total improvement TS=354

Seems to work at all energies



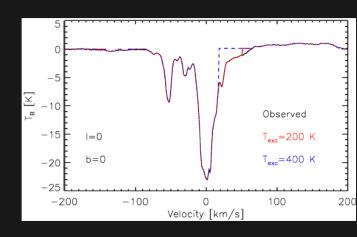
2018 LAT reanalysis

Residuals of revised diffuse model and 43 new point-source candidates (+)

DM template provides minimal fit improvement

White contour: X bulge seen in NIR

Black contours: Nuclear bulge


2021

How can we improve?

Idea:

- Revise model for HI deconvolution
- Account for absorption
- Perform radiation transport calculation

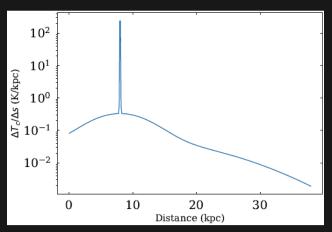
Line emission and continuum emission

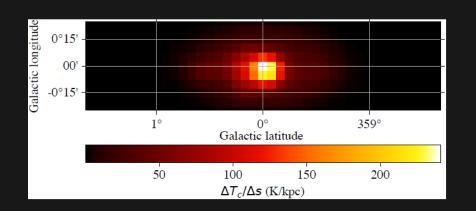
$$\frac{dI}{ds} = j_c + j_l - \alpha_l I$$

For each segment Δs of the line of sight with optical depth τ = Δs α_l

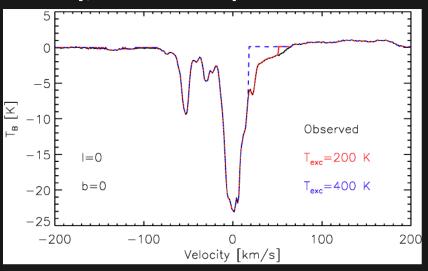
$$I(\Delta s) = I_0 e^{-\tau} + \frac{j_c + j_l}{\alpha_l} (1 - e^{-\tau})$$

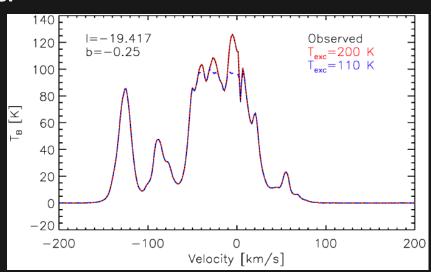
Increment in brightness temperature


$$\Delta T = \left(\frac{\Delta T_c + \Delta T_l}{\tau} - T_0\right) (1 - e^{-\tau}) \text{ with } \Delta T_l = \tau T_{exc}$$


Gas data from HI4PI survey

Continuum model based on CHIPASS survey and axisymmetry strongly peaked at the Galactic Center





Solution depends on assumed excitation temperature,

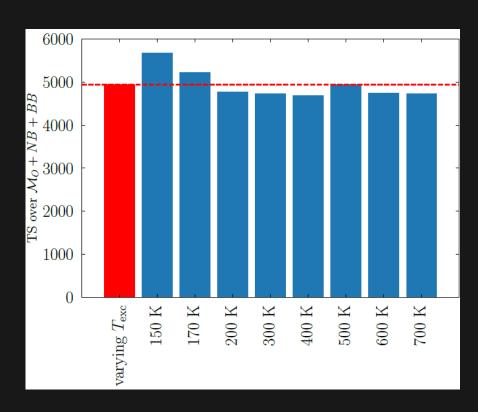
T_{exc}=200 K is best compromise

Locally, smaller temperatures are better

New model with continuum emission and absorption

- Much more realistic than previous analyses
- The variety of observed HI spectra is well reproduced
- Same gas-flow model as was used 15 years ago

How does that affect analysis of Galactic diffuse emission?



Also include a revised model of the X bulge (Coleman et al. 2020) tracing Red-Clump stars and marked as "BB".

"NB" stand for the nuclear bulge

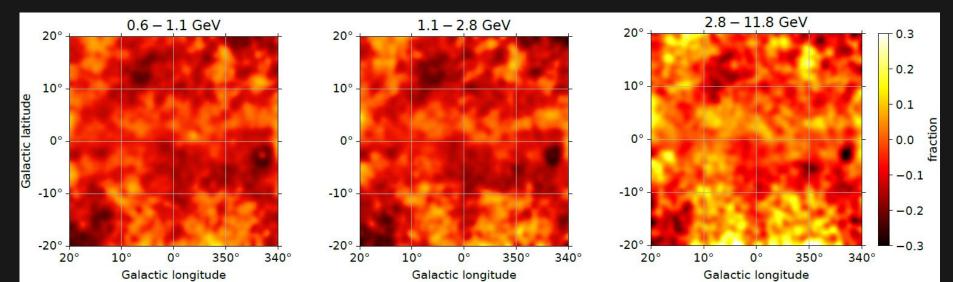
We henceforth use varying T_{exc}

Sequential analysis

Baseline	Additional	ΔTS	Significance
model	source		
Basel.	Cored ellips.	0.0	$0.0 \ \sigma$
Basel.	Cored	0.1	$0.0 \ \sigma$
Basel.	BB	282.2	15.3σ
Basel.	NFW ellips.	647.2	24.2σ
Basel.	NFW	807.1	27.3σ
Basel.	NB	1728.9	$40.8 \ \sigma$
Basel.+NB	Cored ellips.	0.1	0.0 σ
Basel.+NB	Cored	0.7	$0.0 \ \sigma$
Basel.+NB	NFW ellips.	1.0	$0.0 \ \sigma$
Basel.+NB	NFW	3.4	$0.2 \ \sigma$
Basel.+NB	BB	261.0	14.7σ
Basel.+NB+BB	NFW ellips.	0.1	0.0 σ
Basel.+NB+BB	Cored ellips.	0.4	$0.0 \ \sigma$
Basel.+NB+BB	Cored	0.7	$0.0 \ \sigma$
Basel.+NB+BB	NFW	2.6	0.1σ

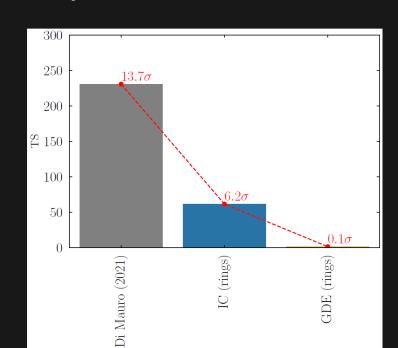
Only gas maps

Gas maps + NB


No DM-like signal Gas maps + NB + BB

Not a fluke: true data are well compatible with a MC-based fake data

Residuals are small, possibly except where the Fermi bubbles appear



Poor models of diffuse emission yield a gamma-ray excess

TS for DM template

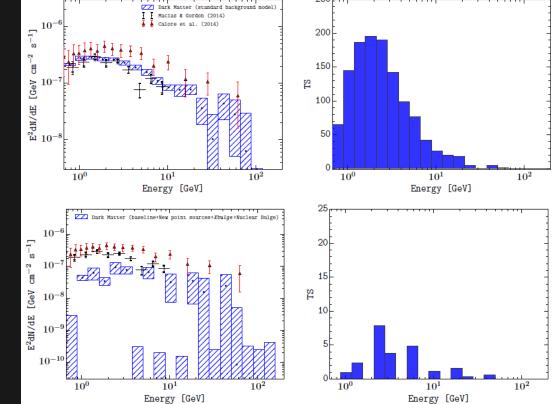
- 1. Base model of Di Mauro
- 2. Reorganize IC in six rings
- 3. Also reorganize hadronic model in four rings

Lack of flexibility is critical

Conclusions

- A new HI gas deconvolution based on full radiation transport
- Very good reproduction of the variety of observed line spectra
- Reanalysis of Fermi-LAT data strongly prefers the new gas model
- It also prefers the nuclear bulge
- It likes the boxy bulge, a revised model of the X bulge
- No evidence whatsoever for a dark-matter scenario

ATS~5000



2018 LAT reanalysis

Old

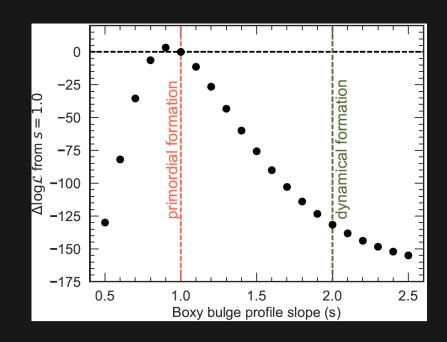
New

DM model

33σ

1σ

Clues on MSP scenario



Slope of BB profile should depend on MSP production scenario

Primordial:

NS formation in massive binaries retains them in globular clusters, etc.

Dynamical: NS are captured and form binaries

