

Galactic halo bubble magnetic fields and UHECRs

Vasundhara Shaw, Andrew Taylor, Arjen Van Vliet

https://www.cosmos.esa.int/web/planck/picture-gallery
 Predehl, P., Sunyaev, R.A., Becker, W. et al. Detection of large-scale X-ray bubbles in the Milky Way halo. Nature 588, 227–231 (2020).

V. Shaw - DESY, Zeuthen, TeVPa 2022

Galactic Halo Bubbles

eRosita (thermal)

Large scale structures = large scale fields

NGC 253 ROSAT PSPC 0.4-0.4 keV 5 arcmin

Milky way is not a starburst galaxy yet it has outflow!

DESY.

(Pietsch et.al 1996)

Total radio intensity (*contours*) and magnetic field orientation of $\underline{NGC 253}$.

DESY.

Probing magnetic fields with synchrotron radiation

Toy Model – Structured fields

$$B_{\rm tor} = B_{\rm str} e^{(-|z|/Z_{\rm mag})} e^{(-z_{\rm min}/|z|)} e^{(-|r|/R_{\rm mag})}$$

 R_{mag} & Z_{mag} = 5 kpc and 6 kpc B_{str} = 3.96 μ G

Toy Model – Turbulent fields

1) https://www.cosmos.esa.int/web/planck/picture-gallery

V. Shaw - DESY, Zeuthen, TeVPa 2022

Toy Model – non-thermal electron distribution at 10 GeV

$$\frac{\mathrm{d}n_e}{\mathrm{dlog}E_e} = C_{\mathrm{norm}} \left(\frac{E_e}{E_{10\mathrm{GeV}}}\right)^{-p+1} e^{-r/R_{\mathrm{el}}} \operatorname{sech}^2\left(\frac{z}{Z_{\mathrm{el}}}\right)$$

Together magnetic fields and nonthermal electrons give Synchrotron!

 $R_{el} \& Z_{el} = 5$ kpc and 6 kpc

DESY.

Synchrotron radiation – standard picture

Synchrotron radiation

 $I^{\text{tot}} \approx 1.5$

 $I_{\rm pol}/I_{\rm tot} \approx 0.5$

 $J_{\parallel}^{\text{tot}} \approx 0.5$

 $I^{tot} = 1$

+X (Galactic south)

+X (Galactic south)

 $J_{\parallel}^{\text{tot}} = 1$

 $I_{\rm pol}/I_{\rm tot} = 0$

Results – Best fit case

Constraints

Shaw et al	2022
------------	------

Best-fit value with 1σ constraint					
Parameter	Best-fit value	Description			
B _{str}	$3.96^{+6.63}_{-1.96} \ \mu \text{G}$	Structured field strength			
B_{tur}	$6.72^{+9.97}_{-3.56} \ \mu \mathrm{G}$	Turbulent field strength			
$R_{\rm Mag} = R_{\rm el}$	$5^{+1}_{-0} \mathrm{kpc}$	Radial cut off			
$Z_{\rm Mag} = Z_{\rm el}$	6^{+1}_{-0} kpc	Azimuthal cut off			
$\log_{10} (C_{\rm norm} [\rm cm^{-3}])$	$-11.72^{+0.62}_{-0.93}$	Electron density at 10 GeV			

Backtracking of UHECRs through toy model using CRPropa3

Arrival directions of UHECRs – Toy Model vs Auger 60° 75° Best fit (Nitrogen at 40 EeV)

-3.0	-2.8	-2.6	-2.4	-2.2	-2.0	-1.8	-1.6		
	log ₁₀ (particles/str)								

Choice of rigidity & species based on PAO

Aab et al 2014 & 2018

V. Shaw - DESY, Zeuthen, TeVPa 2022

Conclusions & Outlook

- Our results indicate $\sim 7 \mu G$ total fields over a large spatial extent with the height of halo being ~ 6 kpc in z-direction which is compatible with S-PASS and other observations.
- Arrival direction of cosmic rays is highly tangled with both the structured and turbulent magnetic fields. We find the cosmic ray deflections from our model are similar with NGC 253 and Cen A hotspots from Auger (Abreu et al. 2022).
- Rotation measures from extra-galactic sources like FRBs should be factored in once the MeerKat and FAST data is public.
- C-BASS, Quijote and Lofar data can also be useful for studying the halo at different frequencies in the future.

Extras

DESY.

Milky way is not a starburst galaxy yet it has outflow!

Large scale structures imply large scale magnetic fields

(Pietsch et.al 1996)

Outflows as seen in starburst galaxies!

Total radio intensity (*contours*) and magnetic field orientation of $\underline{NGC 253}$.

SYNCHROTRON RADIATION

• "Magneto-bremsstrahlung" = Radiation emitted by relativistic charged particles (mostly electrons) due to acceleration ("gyro-motion") in a static magnetic field.

$$< P_{syn} > = \frac{4}{3} c \sigma_T \beta^2 \gamma^2 u_B \propto \gamma^2 B^2$$

- u_B :magnetic energy density $\left(\frac{B^2}{8\pi}\right)$
- $\beta \gamma$: speed of electron
- σ_T : Thompson scattering

Polarised synchrotron radiation

$$J_{\perp}^{l} = \frac{1}{\tau} \int_{\log E_{e}^{\min}}^{\log E_{e}^{\max}} \frac{\mathrm{d}n_{e}}{\mathrm{dlog}E_{e}} \mathrm{dlog}E_{e} \left[F\left(\frac{E_{\gamma}}{E_{\gamma}^{\mathrm{peak}}}\right) + G\left(\frac{E_{\gamma}}{E_{\gamma}^{\mathrm{peak}}}\right) \right]$$
(3)

 and

$$J_{\parallel}^{l} = \frac{1}{\tau} \int_{\log E_{e}^{\min}}^{\log E_{e}^{\max}} \frac{\mathrm{d}n_{e}}{\mathrm{dlog}E_{e}} \mathrm{dlog}E_{e} \left[F\left(\frac{E_{\gamma}}{E_{\gamma}^{\mathrm{peak}}}\right) - G\left(\frac{E_{\gamma}}{E_{\gamma}^{\mathrm{peak}}}\right) \right]$$
(4)

where

$$au^{-1} = rac{\sqrt{3}lpha}{4\pi} rac{B_{\perp}}{B_{
m crit}} rac{m_e c^2}{\hbar}, \qquad E_{\gamma}^{
m peak} = rac{3}{2} \Gamma_e^2 rac{B_{\perp}}{B_{
m crit}} m_e c^2,$$

and

$$F(x) = x \int_x^\infty K_{5/3}(x') dx', \qquad G(x) = x K_{2/3}.$$

Extras