Methods for a consistent treatment of systematic uncertainties in a combined analysis of IceCube's high energy neutrino data

Richard Naab1*, **Erik Ganster**² for the IceCube collaboration

¹DESY Zeuthen, ²RWTH Aachen University

*Speaker

Motivation

Neutrinos and other messengers from the high energy universe

Multi-messenger picture:

 Tight relations between diffuse fluxes of cosmic rays, gamma rays and neutrinos

Energy spectra connected to underlying population of sources

Motivation

The astrophysical neutrino energy spectrum

- Most simple model for the astrophysical neutrino flux:
 - Single power law with normalisation and spectral index as free parameters
 - No statistical preference for models with more structure, so far
- IceCube measures neutrinos in different detection channels (event selections)
 - Probe different neutrino flavours as well as different energy ranges of the diffuse spectrum
- Our goal: Want to combine multiple samples in a Combined Fit, in order to get a more complete picture & probe structure in spectrum

arXiv:2203.08096

IceCube Detecting neutrino interactions in ice

- Instrumented 1km³ of ice, deep in Antarctic glacier where ice has highest transparency J. Geophys.Res., 111, D13
- Digital Optical Modules (DOMs) detect Cherenkov radiation from secondary particles of *v*-interactions

Neutrino fluxes in IceCube

Atmospheric backgrounds

- Background for measurement of astrophysical ν flux: atmospheric μ and ν produced in cosmic ray air-showers
- 2.3 kHz event rate at trigger level dominated by μ , reduce by
 - Restricting sample to up-going events (northern sky)
 - Veto-techniques (southern sky)
- Atmospheric ν flux potentially reduced in veto, otherwise indistinguishable

Event samples and analysis method

Event topologies in IceCube

Targeted in combined fit: Tracks and Cascades

Track-like events

- μ produced in ν_{μ} -CC interaction
- Large lever arm: good angular resolution (<1°)
- Energy of μ at detector entry
- μ produced far outside still reach the detector: large effective area

Cascade-like events

- ν_e/ν_{τ} -CC & all-flavour NC interaction
- Poorer angular resolution (<10°)
- Visible energy deposited within instrumented volume
- Interaction vertex ~within detector

Combined fit of tracks and cascade data

Event selections

- Tracks selection:
 - Restricted to northern sky (θ > 85deg)
 - Track quality cuts and BDT to discriminate cosmic ray backgrounds and cascade events
 - 650k Events / 9.5 years

- Cascade selection:
 - Cascade filter, reduce cosmic ray background
 - Fiducial volume cuts and BDT classification of events
 - 4.3k Events / 6 years

Analysis Concept

Combining event selections

- Binned likelihood analysis, with reconstructed energy and zenith angle observables
- de-correlate analysis bins so that

 $\mathscr{L}_{\text{combined}} = \mathscr{L}_{\text{tracks}} \times \mathscr{L}_{\text{cascades}}$

- Consistent Monte Carlo simulation necessary in order to correctly account for this event overlap:
 - Minor fraction (0.1% of signal), expected since selected topologies very different
 - Mostly short muon tracks starting in the detector, do not constitute signal events of either selection
 - Removal of overlapping events from either of the two selections does not affect sensitivity

Analysis concept

Sources of uncertainties

- Atmospheric ν flux modelled with MCEq, with nuisance parameters:
 - Overall yield, spectral index shift, hadronic interaction model interpolation
 - Barr-scheme: variation of ν yields from π/K decays
- Atmospheric µ modelled with CORSIKA/MuonGun: overall flux yield uncertainty
- Detector response
 - Uncertainty to great extend dominated by optical properties of ice and optical efficiency of photosensors
 - Need dedicated simulation modelling within the according uncertainty: SnowStorm technique - continuous variation of detector response during simulation, method verification successful in fit of Tracks sample
 - Self-veto effect

Ratio of secondary to incident particle energy x_{LAB} Shaded orange: Phase-space considered here

Atmospheric flux modelling

Self-veto uncertainty for Cascade selection

- Event selection removes track-like events, mainly coming from atmospheric μ
 - Atmospheric ν might be rejected as well if coming from same air-shower as μ
- Full air-shower simulation with corresponding μ and ν not feasible to sufficient statistics, use ν only simulation and correct with ν *Veto* (JCAP07(2018)047)
 - Selection-specific response to µ arriving at the detector uncertain due to same computational limits → effective energy threshold as additional source of uncertainty
- Disclaimer: Variation not yet accounted for in sensitivities shown below

Astrophysical single power law

- 10 years of data assumed
- Energy resolution of cascade channel has more power to constrain energy spectrum
- High statistics tracks channel helps in the combination by constraining atmospheric fluxes and detector systematics

	through-going tracks	cascades	combined fit
flux normalization Φ_0^{astro}	$1.36^{+0.21}_{-0.65}$	$1.36^{+0.11}_{-0.17}$	$1.36^{+0.09}_{-0.15}$
spectral index γ_{astro}	$2.37^{+0.08}_{-0.23}$	$2.37^{+0.05}_{-0.07}$	$2.37^{+0.04}_{-0.05}$

PoS(ICRC2021)1129

Astrophysical flavour ratio

- Combination of tracks and cascades provides sensitivity to flavour content of the astrophysical flux
- ν_{μ} fraction relatively well constrained by tracks sample, ν_{e}/ν_{τ} fraction degenerate in cascade sample
- no dedicated ν_{τ} selection here, but 10-15% contribution to tracks selection provides constraint
- Can possibly distinguish between different emission mechanisms at idealised sources
 - 1:2:0 from π and subsequent μ decay
 - 0:1:0 from sources with dampened μ
 - 1:0:0 from neutron decay

Models beyond the single power law

Testing for curvature in astrophysical ν spectrum

- Assume cutoff model¹, test compatibility of alternative model: single power law (SPL), cutoff or LogParabola flux
- Combination provides additional constraints: Improvement larger than simple combination of two independent measurements!

Event selection	SPL	LogParabola
Through-going muon tracks	p=0.16 (1.4σ)	p=0.84 (0.2σ)
Cascades	p=0.011 (2.5σ)	p=0.32 (1.0σ)
Combined	p=0.002 (3.1σ)	p=0.26 (1.1σ)

¹Flux assumption: ApJ 928, 50 best fit model flux

Models beyond the single power law

Testing for curvature in astrophysical $\boldsymbol{\nu}$ spectrum

- Assume LogParabola model¹, test compatibility of alternative model: single power law (SPL), cutoff or LogParabola flux
- Combination provides additional constraints: Improvement larger than simple combination of two independent measurements!

Event selection	SPL	Cutoff
Through-going muon tracks	p=0.13 (1.5σ)	p=0.68 (0.4o)
Cascades	p=0.001 (3.2σ)	p=0.21 (1.2σ)
Combined	p=9e-5 (3.9o)	p=0.16 (1.3σ)

• Assume un-broken single power law¹: Expected lower limit on exponential cutoff $E_{\rm cutoff}$

¹Flux assumption: ApJ 928, 50 best fit model flux

Outlook

Results coming up soon

- Toolkit for measuring the diffuse ν spectrum using the combination of event selections
 - SnowStorm Monte Carlo technique for consistent treatment of detector systematics, successfully verified on Tracks sample
 - General Monte Carlo simulation to fully de-correlate events samples
 - Combined likelihood with common nuisance parameters
- Performing combined fit on data soon, using IceCube's high-energy cascade (11 years, to be unblinded) and track data
 - Probing energy spectrum and flavour composition with unprecedented precision

Backup

Astrophysical segmented flux

- 10 years of data assumed
- Highest energies: Low atmospheric background, but also astrophysical spectrum falls off
- Lower energies: astrophysical component subdominant, self-veto for down-going cascade events still provides sensitivity
- Glashow resonance at 6.3 PeV enhances sensitivity

Models beyond the single power law

Testing for curvature in astrophysical ν spectrum

• Isotropic single power law (SPL) model

•
$$\Phi_{\rm astro}^{\nu+\bar{\nu}}(E_{\nu}) = \Phi_0^{\nu+\bar{\nu}} \left(\frac{E_{\nu}}{100 {\rm TeV}}\right)^{-\gamma}$$

Isotropic cutoff model

•
$$\Phi_{\text{astro}}^{\nu+\bar{\nu}}(E_{\nu}) = \Phi_0^{\nu+\bar{\nu}} \left(\frac{E_{\nu}}{100\text{TeV}}\right)^{-\gamma} e^{\left(\frac{-E_{\nu}}{E_{\text{cutoff}}}\right)}$$

• Isotropic LogParabola model

•
$$\Phi_{\rm astro}^{\nu+\bar{\nu}}(E_{\nu}) = \Phi_0^{\nu+\bar{\nu}} \left(\frac{E_{\nu}}{100 {\rm TeV}}\right)^{-\alpha_{\rm LP} - \beta_{\rm LP} \log(\frac{E_{\nu}}{100 {\rm TeV}})}$$

Analysis tool NNMFit

Statistical modelling for combined analyses

• **Binned likelihood**, using e.g. reconstructed energy and reconstructed zenith as observables:

 $\mathscr{L}(\mu_j) = \prod_j \mathscr{L}^j_{\text{bin}}(\mu_j; d_j)$

with bin expectations μ_j and data counts d_j

- Test different **flux models** by re-computing bin expectations μ_j from event weights $\mu_j(\vec{\theta}) = \sum_i w_i^j(\vec{\theta})$: forward folding
- Millions of MC events, O(20) parameters $\overrightarrow{\theta}$: need fast computations
 - **theano** package (continued as **aesara**) for optimising and evaluating tensor operations, including automatic differentiation

