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Motivation
• UHE (≳EeV) neutrinos are expected to be 

produced by UHECRs


• Ideal messenger


• Propagate cosmological distances (minimal 
attenuation)


• Undeflected by magnetic fields


• Carry information about their production 
channel


• Unique probe of:


• Extreme environments across all redshifts


• Particle physics at post-LHC energies 
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IceCube/NASA
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Askaryan Radiation & ARA

• UHE neutrino initiates particle shower in ice


• Short wavelengths (relative to shower size) 
are incoherent


• Large wavelengths add coherently


• Radio Cherenkov emission


• Impulsive plane wave


• Askaryan Radio Array (ARA) designed to 
detect UHE neutrinos via Askaryan radiation
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ARA Detector
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• Consists of 5 stations


• First station deployed in 2011, 5th 
deployed in 2018


• Each station has 16 radio antennas across 4 
strings 


• 8 detect horizontal polarization (Hpol)  
& 8 detect vertical polarization (Vpol)


• Triggers when 3+ antennas’ power is >5x 
noise in a 25 ns window
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Phased Array Detector
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• 5th ARA station has an additional 
detector system: the Phased Array (PA)


• Consists of 1 string with 7 Vpol & 2 Hpol 
antennas


• More efficiently triggers on low signal-to-
noise ratio (SNR) signals by adding 
signals in preset directions (beams)


• Signals add coherently, noise does not


• Triggers when a beam has excess power 
in 10 ns window


• PA trigger also triggers the ARA station


• Analysis efficiency is also increased 
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P. Allison et al (2019) 
arXiv:1809.04573

P. Allison et al (2022) 
arXiv:2202.07080

Phased Array Detector
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Improved analysis efficiency 
(fraction of triggered neutrino 

events in signal region)

Improved trigger 
efficiency

• 5th ARA station has an additional 
detector system: the Phased Array (PA)


• Consists of 1 string with 7 Vpol & 2 Hpol 
antennas


• More efficiently triggers on low signal-
to-noise ratio (SNR) signals by adding 
signals in preset directions (beams)


• Signals add coherently, noise does not


• Triggers when a beam has excess power 
in 10 ns window


• PA trigger also triggers the ARA station


• Analysis efficiency is also increased 



Marco Muzio (Penn State)

Vertex Reconstruction - ARA
• Cross-correlating signal in each antenna 

allows for interaction vertex reconstruction


• Vertex reconstruction allows for background 
CR and anthropogenic signals to be 
discarded
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Traditional ARA Station 
Reconstruction

<1° resolution on vertex reconstruction

J. Torres (2021) - Neutrino Astrophysics 
with the Askaryan Radio Array
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Vertex Reconstruction - PA
• Cross-correlating signal in each antenna 

allows for interaction vertex reconstruction


• Vertex reconstruction allows for background 
CR and anthropogenic signals to be 
discarded
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P. Allison et al (2022) 
arXiv:2202.07080

Refracted ray

Direct ray
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Overview of Five-Station Analysis
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• Diffuse neutrino search in full livetime of all 
5 ARA stations & the PA


• Almost 25 station-years of livetime 

• Each station will be analyzed independently 
to determine best cut parameters


• Different stations may be best analyzed 
with different parameters


• Cut parameters from each station will be 
jointly optimized to maximize discovery 
potential
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P. Allison et al (2022) 
arXiv:2202.07080

Overview of Five-Station Analysis

• Diffuse neutrino search in full livetime of all 
5 ARA stations & the PA


• Almost 25 station-years of livetime 

• Each station will be analyzed independently 
to determine best selection criteria


• Different stations may be best analyzed 
with different parameters


• Selection criteria from each station will be 
jointly optimized to maximize discovery 
potential
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P. Allison et al (2020) 
arXiv:1912.00987

PA selection criteria

A2/3 selection criteria

Some example selection criteria
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Comparison to Previous Work
• Strongest limits previously set by analysis 

of:


• A2/3 data: 8 station-years


• PA data: 0.6 station-years


• This work: 24 station-years


• ARA: 22 station-years


• PA: 2 station-years


• Will represent strongest limits by radio 
on 1-100 EeV neutrinos to date!
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*assuming analysis efficiency of A2/3 & PA analyses
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First Steps Towards an Analysis

• Preparing A5/PA data for blinding


• Data must be synchronized & categorized before blinding


• Building a data-driven model of detector noise 
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PA & A5 Dataset
• PA-A5 dataset is paradigmatically 

representative of upcoming detectors 

• Combines low threshold phased array 
trigger w/ info from traditional antennas 
(providing azimuthal information)


• Similar to Radio Neutrino Observatory 
in Greenland (RNO-G, currently 
deploying) & IceCube-Gen2 Radio 
(planning stage)


• Analysis of this dataset will be a proof of 
concept and inform the next generation of 
analyses as to the challenges & how to 
overcome them
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A5 & PA RNO-G

IceCube-Gen2 Radio
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Synchronizing PA & A5 Events
• Four event types for PA/A5 system:


• PA-only events


• A5-only events


• Joint events, PA-triggered


• Joint events, separately triggered


• Event types matched via a combination of 
timestamps & other event information


• (Variable) clock offset needs to be 
accounted for
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1st ARA Run
2nd ARA Run

Offset between 
PA & ARA Clocks
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Correcting for Variable Clock Rate
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ARA Clock Rate

DDA Te
mperature

TDA Te
mperature Corrected Offset

Clock rates inversely related 
to system temperature

<latexit sha1_base64="0pp+i0xQBrriWfwmWyjidS2n0rw=">AAACf3icbVFdaxNBFJ1dtbap1qiPfRmaVgVl2S3ix4NQ7IuPFUxbyIZwd3K3HTIfy8wdMSz5G/4w3/wvPjibBhobLwwczjn3zp0zVaOkpzz/naT37j/Yeri909t99HjvSf/ps3NvgxM4FFZZd1mBRyUNDkmSwsvGIehK4UU1O+30i+/ovLTmG80bHGu4MrKWAihSk/7PkiDwF594SfiDWh6MsM6hIJxykhoXZdmjNX1TLc16v7FaGlDRZzxlXCgrZtwBLa31RN5ayQVc0zkQF3OhkB/Kw8WkP8izfFl8ExQrMGCrOpv0f5VTK4JGQ0KB96Mib2jcgiMZZy56ZfDYgJjBFY4iNKDRj9tlfgt+FJkpr62Lx8Q1Ona9owXt/VxX0amBrv1drSP/p40C1R/GrTRNIDTi5qI6KE6Wd5/Bp7ILU80jAOFk3JWLa3AQA3a+F0Mo7j55E5wfZ8W77Pjr28HJ51Uc22yfHbBXrGDv2Qn7ws7YkAn2JzlIXidv0iR9mWZpfmNNk1XPc/ZPpR//Ao1Bv7M=</latexit>

⌧ = uncorrected time

t = corrected time

⌫ = nominal const. clock rate

fi = true clock rate at cycle i
<latexit sha1_base64="ZXCjzmV/Yg6bZDN/DT+NEzw26aM="></latexit>

ti = ti�1 +
⌫

fi
(⌧i � ⌧i�1),

t0 = ⌧0
Time correction for 
variable clock rate
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Noise Modeling
• Expect thermal noise to follow a Rayleigh 

distribution in the frequency domain


F( f; σ) =
f

σ2
e−f 2/2σ2
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Rayleigh fit to spectral amplitude 
distribution for fixed frequency bin

Fit spectral coefficient vs frequency
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Noise Modeling
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Spectral coefficient over time shows the detector is stable for long periods,  
& can also help identify when changes in detector configuration occur

2 year period2 year period
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Summary
• Efforts are well underway to perform a diffuse 

neutrino search in the full ARA dataset


• Projected limit will be ARA’s most sensitive 
and the strongest radio limit in the  
1-100 EeV range to date 

• Next steps:


• Complete data-driven detector gain model


• Blind data & start analyzing!
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Thank you!


