

Tau appearance from high-energy neutrino interactions

August 9th, 2022 **TeVPA 2022** Kingston, Ontario Canada

Pavel Zhelnin

Alfonso Garcia Soto

Ibrahim Safa

Carlos Argüelles Delgado

- Main Takeaway
- Motivation
- Why tau neutrinos?
- Tau neutrino backgrounds
- Tau appearance
- Conclusion

Earth-going high-energy electron and muon neutrinos have a non-negligible probability of producing tau neutrinos

Astrophysical neutrinos

- IceCube has observed an astrophysical flux through HESE sample
- Some evidence of astrophysical sources
- However we're plagued by low event counts at high energies
- •Only two tau neutrino candidates

High Energy Starting Event sample (HESE): Vetos events that start outside specified volume and with reconstructed energy about 60 TeV

IceCube Collaboration, PhysRevD.104.022002

Why can't we see tau neutrinos that well? -- Double, no brights --- Double, with brights Single, no brights + Exp. Data bright DOM Photoelectrons bright DOM Only resolvable in IceCube if tau is bright DOM Time IceCube et al., arXiv:2011.03561

- Crash course in IceCube morphology
 - Muons produce tracks
 - Electrons/taus = cascades
 - Taus also = "double bangs"
 - energetic enough
 - For the most part, electron and tau events are degenerate!

But why does seeing them matter?

- Assuming standard oscillations we should expect 1:1:1 ($\nu_e : \nu_\mu : \nu_\tau$)
- Yet, no bonafide evidence of tau component (only two tau neutrino candidates)
- This leaves room for possible BSM scenarios
 - HESE with ternary topology ID
 - Best fit: 0.20 : 0.39 : 0.42
 - Global Fit (IceCube, APJ 2015)
 - Inelasticity (IceCube, PRD 2019)
 - 3ν -mixing 3σ allowed region

 $\nu_e: \nu_\mu: \nu_\tau \text{ at source} \to \text{ on Earth:}$

- $0:1:0 \rightarrow 0.17: 0.45: 0.37$
- $1:2:0 \rightarrow 0.30: 0.36: 0.34$
- $1{:}0{:}0 \to 0.55:\ 0.17:\ 0.28$
- $1:1:0 \rightarrow 0.36: 0.31: 0.33$

Pavel Zhelnin | TeVPA 2022

IceCube Collaboration, arXiv:2011.03561

- ν_{τ} interacts in Earth, produces τ , decays in air
- Projected performance shows they'll be able to detect cosmogenic ν

Earth-skimming (EAS) experiments have been designed to probe GZK flux

Backgrounds as previously understood

- Astrophysical taus basically were thought to be background-less
 - Rarely produced in atmosphere
 - Prompt -> 1-5% Branching Ratio
 - Conventional -> 10^{-4}
 - Standard oscillations are suppressed at energies greater than 100 GeV
- So if tau observed = astrophysical

Our analysis

Electron and muon neutrinos produce $\tau \nu_{\tau}$ as they propagate through Earth. How?

Image Credit: Jack Pairin

Contribution of these channels vs DIS Deep Inelastic Scattering = DIS

• Secondaries are produced by onshell W-bosons which decay to $\nu_{\tau} + \tau$ 10% of the time

Effects on IceCube's HESE sample

- 1-20% contribution above 1 PeV
- Becomes dominant background above 300 TeV
- Our capacity to reject non tau component is reduced given secondary taus

E_{th}	$P_{\tau>15\mathrm{m}}$	HESE	Atmos.	$ u_{\mu}/\nu_{e} ightarrow u$
100 TeV	1%	6.63	0.13(6.3)	0.05-0.11 (6.0
200 TeV	9%	3.00	0.05(4.3)	0.03-0.09 (4.1
300 TeV	17%	1.57	0.02(3.2)	0.02-0.07 (2.9)
400 TeV	23%	1.12	0.01(2.7)	0.01-0.06 (2.4)

Pavel Zhelnin | TeVPA 2022

- ν_{τ} produced from ν_{μ} and ν_{e} alone can contribute as much as 5 - 50% for E > 10 PeV
- However this doesn't depend much on relative composition of ν_{μ} and ν_{e}
- The variation in primary spectrum plays a larger role

Angular Dependence

- Expected tau neutrinos @ detector for different fluxes
 - Astrophysical takes best fit from Northern Tracks (NT) and HESE (assuming 1:1:1)
 - Secondary taus assume different ratios of ν_e/ν_μ (also takes best fit from NT/HESE)
- Non primary tau flux is greater than prompt at 300-500 TeV

Flavor compositions: 1:1:1 vs 1:1:0?

- In general we assume 1:1:1 ratio
- EAS experiments are sensitive to this flux
- However if we assume 1:1:0 then EAS experiments will still observe taus due to our background
- Measurement of GZK flux is degenerated

Conclusions

- HE ν_e and ν_μ produce ν_τ as they propagate through Earth
- Reduces our capability to reject non-tau astrophysical neutrinos
- EAS experiments, if they observe taus, will not be able to determine if they come from a 1:1:1 or 1:1:0 flux as a result of this new background
- Our paper: Garcia-Soto et al., PhysRevLett.128.171101

Thank you! Questions?

Tau appearance as a function of angle

Pavel Zhelnin | TeVPA 2022

MC chain

- NuPropEarth handles neutrino propagation through Earth
- GENIE calculates relevant neutrino cross sections
- Proposal calculates tau energy losses
- TAUOLA simulates tau decay

https://github.com/GENIE-MC/Generator

https://tauolapp.web.cern.ch/tauolapp/

https://github.com/tudo-astroparticlephysics/PROPOSAL/tree/6.1.6

https://github.com/pochoarus/NuPropEarth

Pavel Zhelnin | TeVPA 2022

