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What is Dark Matter’s Velocity?
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Boosted Dark Matter

Boosted Dark Matter at Neutrino Experiments The highest-speed local dark
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Current and future neutrino experiments can be used to discover dark matter, not only in searches
for dark matter annihilating to neutrinos, but also in scenarios where dark matter itself scatters off
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Novel direct detection constraints on light dark matter

Strong New Limits on Light Dark Matter from Neutrino Experiments
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If dark matter (DM) particles are lighter than a few MeV/c? and can scatter off electrons, their

. . interaction within the solar interior results in a considerable hardening of the spectrum of galactic
Sub-GeV halo dark matter that enters the Sun can potentially scatter off hot solar nuclei and be dark matter received on Earth. For a large range of the mass vs cross section parameter space,

ejected much faster than its incoming velocity. We derive an expression for the rate and velocity {me, 0.}, the ‘reflected’ component of the DM flux is far more energetic than the endpoint of the
distribution of these reflected particles taking into account the Sun’s temperature and opacity. We ambient galactic DM energy distribution, making it detectable with existing DM detectors sensitive
further demonstrate that future direct detection experiments could use these energetic reflected to an energy deposition of 10 —10° eV. After numerically simulating the small reflected component

c 1 s v s s of the DM flux, we calculate its subsequent signal due to scattering on detector electrons, deriving
particles to probe light dark matter in parameter space that cannot be accessed via ordinary halo new constraints on o, in the MeV and sub-MeV range using existing data from the XENON10/100,
dark matter. LUX, PandaX-II, and XENON1T experiments, as well as making projections for future low threshold
direct detection experiments.




Supernova Shocks as Dark Matter Sources

The Good The Bad

v>0.01c Distances > 100 pc

Ejecta mass ~few M, - Transient, not constant

Credits: NASA, ESA, J. Hester and A. Loll (Arizona State University) 4



Supernova Shocks™ as Dark Matter Sources

*NOT Fermi Acceleration

The Good The Bad

v>0.01c Distances > 100 pc

Ejecta mass ~few M, - Transient, not constant

Credits: NASA, ESA, J. Hester and A. Loll (Arizona State University) 5



The Monogem Ring

RAKEIE g ROSAT image of the Monogem Ring
215° 210° 205° 200° 195° 190° 185° ) .
: - - - - : . &= (taken from Knies, Sasaki and
Plucinsky 2018)

Age = 68,000 years
Distance = 300 pc
Corresponding velocity: 4,300 km/s

Esn = 8*10°° erg, assume 5 M_
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Spin-Independent Scattering: Upscattered Flux
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Spin-Independent Scattering: Flux at Earth
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Spin-Independent Scattering: Flux at Earth
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Velocity-Dependent Scattering: Effective Operators
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Velocity-Dependent Scattering: Effective Operators

-scali f '
v-scaling ot o Describe general DM-nucleon

interactions using a combination of
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Numerical Implementation of NREO Formalism

Capt’n General: A generalized stellar dark matter capture
and heat transport code
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Capt’n General is a FORTRANOO standalone package that can be used to compute the capture
and heat transport of dark matter in stars. It can compute capture rates for constant, velocity and
momentum-dependent DM-nucleon elastic scattering cross sections, as well as non-relativistic
effective operator interactions. Capt’n General can be interfaced with the GAMBIT global
fitting codebase as well as stellar evolution simulation codes such as MESA. ©)
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Limits on Effective Operators
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SuperCDMS Surface Athermal Phonon Detector
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SuperCDMS Surface Athermal Phonon Detector
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Limits on Effective Operators

Solid: Surface Phonon
Detector

Dashed: SuperCDMS
SNOLAB Projection

Dotted: DARWIN
Projection

Cosmology

CRESST

CDMS

Surface Detector Limit
CDMS Projection
Darwin Projection

16




Limits on Effective Operators
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Thank you!

Neal Avis Kozar: Global fit of Non-relativistic Effective Operator Dark Matter using Solar

Neutrinos, Thursday at 14:40 (Dark Matter XI)

Thank you to Bradley Kavanagh for modifications to WIMpy_NREFT code!
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Nonrelativistic Reduction of Lagrangian Terms
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- Nonrelativistic Reduction
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Nonrelativistic Reduction of Lagrangian Terms
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