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WHAT IS 21CM COSMOLOGY?
• In between, there are few stars/galaxies, only diffuse hydrogen

• Search for the hyperfine transition of neutral hydrogen → 21cm

NAOJ/NOAO

2205.06270
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WHAT’S THE CATCH?

• Experimentally: huge foregrounds, 
e.g. synchrotron radiation

• Theoretically: Prevailing view is 
that analytic/perturbative 
methods won’t work
• Reionization is very 

patchy/nonlinear
• Instead rely on computationally 

expensive simulations

tim
e

McQuinn & D’Aloisio, 2018.

21cmFAST

THESAN



21CM SIGNAL IS PERTURBATIVE

• McQuinn & D’Aloisio 2018 showed effective field theory 
(EFT) methods work on observable scales

• Steps in building up our EFT:
• Relating 21cm to matter density?
• Dealing with small nonlinear scales?
• Redshift space distortions?
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FROM DENSITY TO 21CM

• Evolution of matter density/large scale structure is well understood

• To study other quantities, we use local bias expansions

• E.g. galaxies are biased tracers of matter, form preferentially in overdensities

• 21cm brightness temperature is a biased tracer of the matter density field

• Include all operators that respect homogeneity and isotropy

𝛿!" = 𝑏"𝛿 − 𝑏∇!𝑘!𝛿 + 𝑏!𝛿! +⋯
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SMALL SCALE NONLINEARITIES?

• Small scale modes become nonlinear first à smooth over these

• Terms with more than one field are still sensitive to small scale modes
• E.g. using a sharp cutoff…

• Remove the dependence on Λ by renormalization

𝚲 is the UV cutoff

W is the window function
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REDSHIFT SPACE DISTORTIONS

• 21cm signal is radiation
• Frequency is redshifted because sources have peculiar velocities
• Occurs along the line of sight, where interferometers are most sensitive
• Need to include redshift space distortions in perturbative treatments

• Expand in small kv/H



FITTING TO THE 
THESAN SIMULATIONS



THESAN

• Neutral fraction is ~0.7 for 
each simulation shown
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• Thesan-1: High resolution
• Thesan-2: Medium resolution
• Thesan-WC-2: Compensates 

for lower star formation due to 
less resolution



THESAN

• Thesan-1: High resolution
• Thesan-2: Medium resolution
• Thesan-WC-2: Compensates 

for lower star formation due to 
less resolution

• Thesan-Low-2: Small haloes 
contribute to reionization

• Thesan-High-2: Large haloes 
contribute to reionization

• Thesan-SDAO-2: Non-standard 
dark matter model
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Wavenumber at which 
the density field 
becomes nonlinear

x_HI = 0.811
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POWER SPECTRUM

x_HI = 0.617

More scales 
become nonlinear 

as time passes

EFT still has predictive 
power past the 
wavenumbers that we fit



POWER SPECTRUM
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theory expansion
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x_HI = 0.384

At this level of ionization, 
perturbative theory 
breaks down



EVOLUTION OF COEFFICIENTS

• How do these coefficients evolve with time?
• Evolution becomes rapid/jagged after a certain 

time --- theory is breaking down
• At the end of reionization, 21cm signal vanishes
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EVOLUTION OF COEFFICIENTS

• Physical interpretations:
• 𝑏!

(#) is linear bias
• 𝑏%

(#) is quadratic bias
• 𝑏∇! is related to bubble size
• 𝑏'%

(#) quantifies anisotropic stresses
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SUMMARY
• On observable scales, we can use perturbative methods
• We’ve extended these EFT methods, e.g. including RSDs
• Theory expansion is a good fit to simulations, at early 

enough redshifts and large length scales
• Evolution of coefficients reflects different physics

• Future steps: 
• Spin temperature fluctuations
• Reconstructing modes in the foreground wedge



BACKUP



COMPARISON IN 
CONFIGURATION SPACE

• 1D slices of 21cm brightness 
temperature at z = 8.30, x_HI = 0.617

• Smoothed over k = 0.4 h/cMpc
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SMALL SCALE NONLINEARITIES?

• Use a systematic method to remove dependence of observables on small 
scales/cutoff à renormalization



WHEN PERTURBATIVITY BREAKS DOWN
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EFT SHAPES AS FUNCTION OF ANGLE
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