

Wenzer Qin

with Katelin Schutz, Aaron Smith, Enrico Garaldi, Rahul Kannan Tracy Slatyer, Mark Vogelsberger

EXTENDING the EFFECTIVE FIELD THEORY of 21CM RADIATION

based on 2205.06270

TeVPA AUGUST 8TH , 2022

• What redshifts have we directly measured?

Years after the Big Bang							
400 thousand	0.1 billion	1 billion	4 billion	8 billion	13.8 billion		
1000	100	10 1+Redshift			1		
				NA	OJ/NOAO		

- What redshifts have we directly measured?
 - z~few: e.g. galaxy surveys

Years after the Big Bang								
400 thousand	0.1 billion	1 billion	4 billion	8 billion	13.8 billion			
		- 7	6 I .	100				
		~ ~ ~	1		Ø,			
		1.		SALTE S	Present day			
		Fully ion	nized	6	. Co			
1000	100	10			1			
		1+Redshift		NA	OJ/NOA			

2205.06270

- What redshifts have we directly measured?
 - z~few: e.g. galaxy surveys
 - z=1100: cosmic microwave background

• In between, there are few stars/galaxies, only diffuse hydrogen

- In between, there are few stars/galaxies, only diffuse hydrogen
 - Search for the hyperfine transition of neutral hydrogen \rightarrow 21cm

WHAT'S THE CATCH?

• Experimentally: huge foregrounds, e.g. synchrotron radiation

WHAT'S THE CATCH?

- Experimentally: huge foregrounds, e.g. synchrotron radiation
- Theoretically: Prevailing view is that analytic/perturbative methods won't work
 - Reionization is very patchy/nonlinear
 - Instead rely on computationally expensive simulations

21CM SIGNAL IS PERTURBATIVE

- McQuinn & D'Aloisio 2018 showed effective field theory (EFT) methods work on observable scales
- Steps in building up our EFT:
 - Relating 21cm to matter density?
 - Dealing with small nonlinear scales?
 - Redshift space distortions?

FROM DENSITY TO 21CM

- Evolution of matter density/large scale structure is well understood
- To study other quantities, we use **local bias expansions**
 - E.g. galaxies are biased tracers of matter, form preferentially in overdensities

FROM DENSITY TO 21CM

- Evolution of matter density/large scale structure is well understood
- To study other quantities, we use *local bias expansions*
 - E.g. galaxies are biased tracers of matter, form preferentially in overdensities
- 21cm brightness temperature is a biased tracer of the matter density field
- Include all operators that respect homogeneity and isotropy

$$\delta_{21} = b_1 \delta - b_{\nabla 2} k^2 \delta + b_2 \delta^2 + \cdots$$

• Small scale modes become nonlinear first \rightarrow smooth over these

$$\delta_{\text{long}}(\boldsymbol{x}) = \int d^3 x' W_{\Lambda}(\boldsymbol{x} - \boldsymbol{x}') \delta(\boldsymbol{x}')$$

• Small scale modes become nonlinear first \rightarrow smooth over these

W is the window function
$$\delta_{
m long}(m{x}) = \int d^3x' W_{\Lambda}(m{x} - m{x}') \delta(m{x}')$$

• Small scale modes become nonlinear first \rightarrow smooth over these

W is the window function
$$\delta_{
m long}({m x}) = \int d^3 x' W_{\Lambda}({m x}-{m x}') \delta({m x}')$$

- Terms with more than one field are still sensitive to small scale modes
 - E.g. using a sharp cutoff...

$$\left[\delta^2(\boldsymbol{k})\right]_{\text{long}} = \int_0^\Lambda \frac{dq}{2\pi^2} \delta(\boldsymbol{q}) \delta(\boldsymbol{k}-\boldsymbol{q}) \neq \left[\delta_{\text{long}}(\boldsymbol{k})\right]^2$$

• Small scale modes become nonlinear first \rightarrow smooth over these

W is the window function
$$\delta_{
m long}({m x}) = \int d^3 x' W_{\Lambda}({m x}-{m x}') \delta({m x}')$$

- Terms with more than one field are still sensitive to small scale modes
 - E.g. using a sharp cutoff...

$$\left[\delta^2(\boldsymbol{k})\right]_{\text{long}} = \int_0^\Lambda \frac{dq}{2\pi^2} \delta(\boldsymbol{q}) \delta(\boldsymbol{k}-\boldsymbol{q}) \neq \left[\delta_{\text{long}}(\boldsymbol{k})\right]^2$$

- Remove the dependence on Λ by renormalization

REDSHIFT SPACE DISTORTIONS

- 21cm signal is radiation
- Frequency is redshifted because sources have peculiar velocities
- Occurs along the line of sight, where interferometers are most sensitive

REDSHIFT SPACE DISTORTIONS

- 21cm signal is radiation
- Frequency is redshifted because sources have peculiar velocities
- Occurs along the line of sight, where interferometers are most sensitive
- Need to include redshift space distortions in perturbative treatments
 - Expand in small kv/H

$$\delta_r = \delta(\vec{k}) - i\frac{k_{\parallel}}{\mathcal{H}}v_{\parallel}(\vec{k}) - i\frac{k_{\parallel}}{\mathcal{H}}\delta v_{\parallel}(\vec{k}) - \frac{1}{2}\left(\frac{k_{\parallel}}{\mathcal{H}}\right)^2 v_{\parallel}^2(\vec{k}) - \frac{1}{2}\left(\frac{k_{\parallel}}{\mathcal{H}}\right)^2 \delta v_{\parallel}^2(\vec{k}) + \frac{i}{6}\left(\frac{k_{\parallel}}{\mathcal{H}}\right)^3 v_{\parallel}^3(\vec{k}) + \cdots$$

FITTING TO THE THESAN SIMULATIONS

THESAN

 Neutral fraction is ~0.7 for each simulation shown

THESAN

- Thesan-1: High resolution
- Thesan-2: Medium resolution
- Thesan-WC-2: Compensates for lower star formation due to less resolution

THESAN

- Thesan-1: High resolution
- Thesan-2: Medium resolution
- Thesan-WC-2: Compensates for lower star formation due to less resolution
- Thesan-Low-2: Small haloes contribute to reionization
- Thesan-High-2: Large haloes contribute to reionization
- Thesan-SDAO-2: Non-standard dark matter model

At this level of ionization, perturbative theory breaks down

EVOLUTION OF COEFFICIENTS

- How do these coefficients evolve with time?
- Evolution becomes rapid/jagged after a certain time --- theory is breaking down
- At the end of reionization, 21cm signal vanishes

EVOLUTION OF COEFFICIENTS

- Physical interpretations:
 - $b_1^{(R)}$ is linear bias
 - $b_2^{(R)}$ is quadratic bias
 - b_{∇^2} is related to bubble size
 - $b_{G2}^{(R)}$ quantifies anisotropic stresses

SIMULATION DIFFERENCES

SUMMARY

- On observable scales, we can use perturbative methods
- We've extended these EFT methods, e.g. including RSDs
- Theory expansion is a good fit to simulations, at early enough redshifts and large length scales
- Evolution of coefficients reflects different physics
- Future steps:
 - Spin temperature fluctuations
 - Reconstructing modes in the foreground wedge

COMPARISON IN CONFIGURATION SPACE

- 1D slices of 21cm brightness temperature at z = 8.30, x_HI = 0.617
- Smoothed over k = 0.4 h/cMpc

Use a systematic method to remove dependence of observables on small scales/cutoff → renormalization

$$\left[\delta^{2}\right] = \delta^{2} - \sigma^{2}(\Lambda) \left(1 + \frac{68}{21}\delta + \frac{8126}{2205}\delta^{2} + \frac{254}{2205}\mathcal{G}_{2}\right) + \cdots$$

WHEN PERTURBATIVITY BREAKS DOWN

EFT SHAPES AS FUNCTION OF ANGLE

