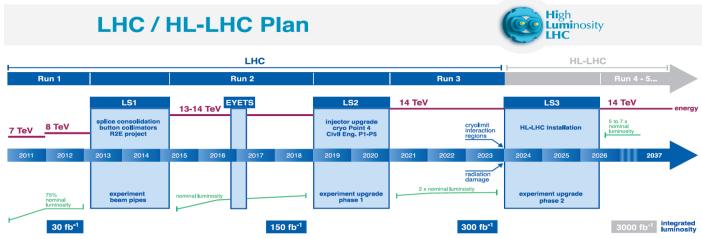
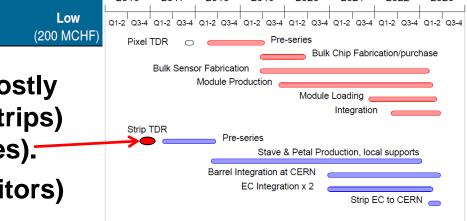
ATLAS Upgrade and Related Topics

<u>Phil Allport</u>, Matt Baca, James Broughton, Daniel Briglin, Laura Gonella, Imran Iqbal, Kostas Nikolopoulos, Tony Price, Simon Pyatt, Juergen Thomas, John Wilson, Alasdair Winter

+ Steve Worm (since Monday)


International Context

- UK Programme and Birmingham Roles
- Birmingham Instrumentation Laboratory for Particle physics and Applications (BILPA)
- Hybrid and Module Assembly
- DAQ R/O and Testing
- ATLAS Irradiations
- Beyond ATLAS Upgrade: FCC
- Proton Radiotherapy Verification and Dosimetry Applications
- Son of PRaVDA, Single Particle Enabled Computed tomography and dose Tracking Radiotherapy Equipment (SPECTRE)


International Context

 Formal approval High Luminosity LHC (HL-LHC) by CERN Council (17/6/16) along with CERN Medium Term Plan, building on European Strategy for

Particle Physics (adopted by Council in May 2013) and US Particle Physics Project Prioritisation Panel (2014: "first high priority large-scale project").

- Next update for European Strategy expected 2019 (*cf* target for FCC studies).
- ATLAS Scoping Document (<u>https://cds.cern.ch/record/2055248?In=en</u>) approved by Resource Review Board with recommendation to proceed based on funding between Reference and Middle level
 Reference (255 MCHF)
- Phase 2 Technical Design Reports expected mostly expected by LHCC in 2017 with first TDR (ITk strips) due by end of this year (at 322 out of ~500 pages).
 (LG writing electronics section, PA one of 5 editors)

2022

ATLAS Tracker Upgrade

HL-LHC: 10× LHC integrated luminosity, 7.5× LHC nominal instantaneous luminosity \succ 10× radiation levels, data volumes and data rates **Muon Detectors Tile Calorimeter** Liquid Argon Calorimeter > 7.5× hit densities (pile-up) per beam crossing Need major upgrades and new tracker \rightarrow Opportunity for tracking in Level-1 trigger ta = 0.0eta = 1.0 eta = 2.0 TRT TRT strip 45 m eta = 3.0 eta = 3.2 **H**Pixels ATLAS Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker Magnets ŝ • Pixel area ~15m² (= 10,000 pixel modules)1.0 eta = 2.0 Strins Ē • Silicon strip area ~165m² 0.5 $\rightarrow 100m^2$ barrel strips 0.0 **Pixels** (= 11,000 barrel modules) -0.5 • With spares means of order 14,000 needed to be 35 0.0 05 20 25 30 10 15 split 50:50 UK:USA z (m)

ATLAS Tracker Upgrade

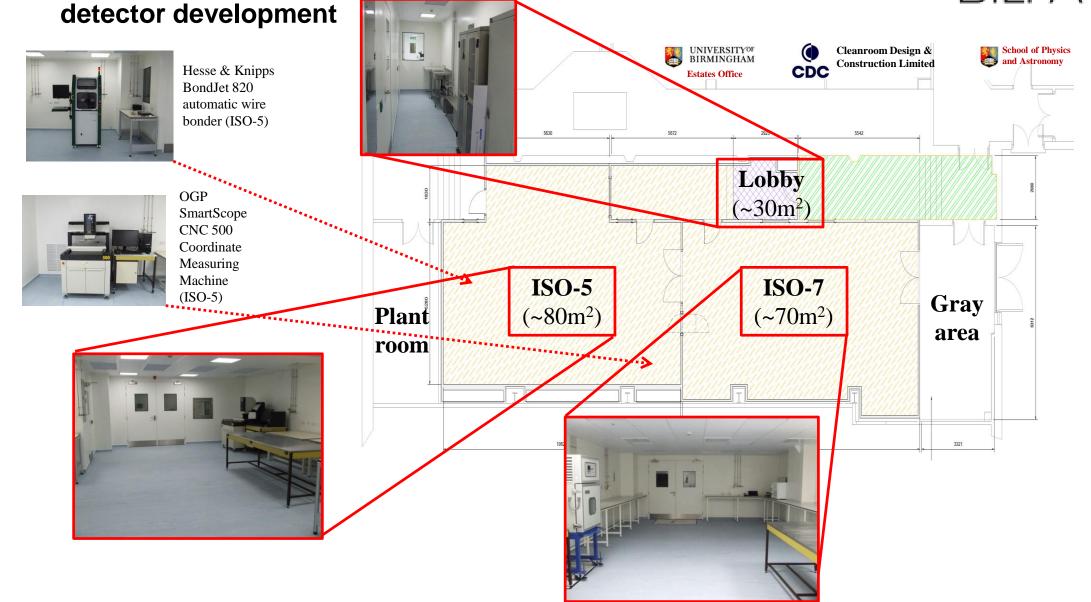
- LG is the International Strip ASIC Co-Coordinator and PA is on the Upgrade TDAQ Architecture/Readout Sub-committee (and both busy with TDR)
- Birmingham R&D has focussed on glue studies, assembly techniques, development of strip module read-out and Quality Assurance
- For the UK in the construction phase of the strip modules we will contribute specifically to three task areas outlined below. <u>10 chip 2560 channel read-out hybrid circuits</u>

• Work Package 1 Strip Module Production

TASK	Description	Institutes	SY
1.3	Hybrid Assembly and QC	Birmingham, Liverpool, Sheffield, Warwick	8.6
1.4	Module Assembly and QC	Cambridge, Birmingham, Glasgow, Liverpool, RAL, Sheffield, Warwick	62.3

Work Package 9 Systems and Irradiation Support

TASK	Description	Institutes	SY
9.6	Irradiation Programme	Birmingham, Lancaster, Liverpool	8.6



10cm×10cm 5120 strip sensor (4 rows of 1280 strips)

Key to these activities both for completion of the R&D phase and for production are the facilities of Birmingham Instrumentation Laboratory for Particle physics and Applications (BILPA) into which our assembly and DAQ equipment have now been moved.

Birmingham Instrumentation Laboratory for Particle physics and Applications

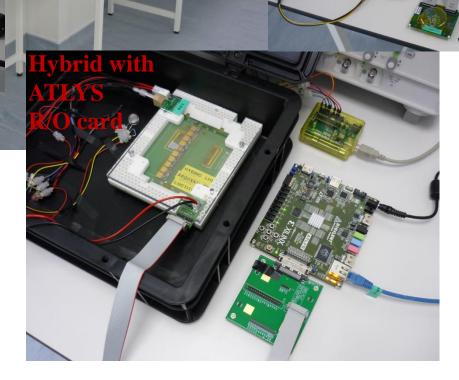
 180m² of new and reconditioned cleanroom laboratory space for both ITk strip module production and R&D on novel radiation-hard detector development.

Hybrid and Module Assembly (ISO-5)

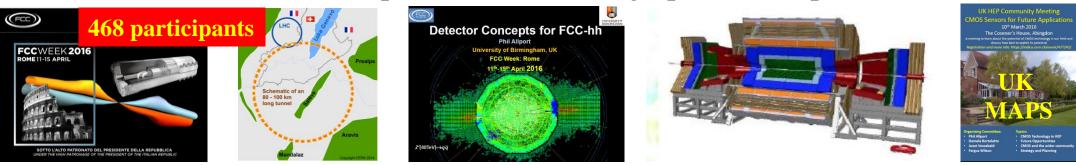
DAQ, Read-out and Testing (ISO-7)

8 1 11 11 11

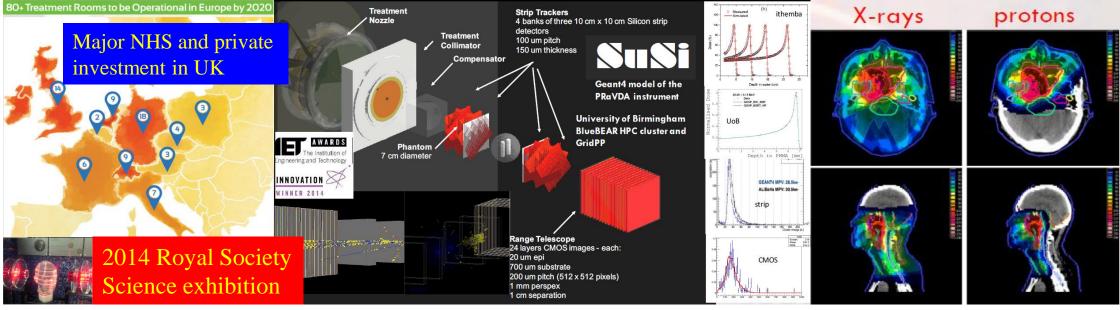
Hybrid, ASIC and sensor


DAQ test system

Single chip


test system

Irradiations for HL-LHC and Future Colliders (ILC, FCC, EIC, LHeC, ...)


- Birmingham R&D on irradiating ATLAS components including electronics and sensors (*see talk by LG*).
- Irradiations as AIDA 2020 Transnational Access Facility (see talk by LG).
- R&D on Monolithic Active Pixel Sensors (MAPS) in High Voltage HV-CMOS or High Resistivity HR-CMOS sensors (*talk by LG*).
- Rad-hard MAPS R&D for *possible* use in ATLAS upgrade tracker (pixel outer layers?) but development time for HL-LHC very aggressive in terms of schedule.
- Huge potential for future facilities both in terms of fast, narrow charge collection (ILC, EIC, LHeC) and radiation tolerance (FCC-hh) with potential for costs as low as standard CMOS chips (> cm²/\$) making up to 10⁴m² possible in future.

• Also promises applications where radiation can be an issue for more standard CMOS sensors (eg radiotherapy esp **hadron therapy**).

Proton Radiotherapy Verification and Dosimetry Applications

- Stopping protons (or ions) give lower doses to non-target tissue
- Strip sensors for proton tracking and energy measurement through stopping distance (Perspex-silicon range telescope)

• Range telescope strip modules largely assembled, wire-bonded and tested at Birmingham

 Full system test and radiation studies also at Birmingham MC40 (Son of PRaVDA, Single Particle Enabled Computed tomography and dose Tracking Radiotherapy Equipment)