
NA62 experiment: $K^+ \rightarrow \pi^+ \nu \nu$

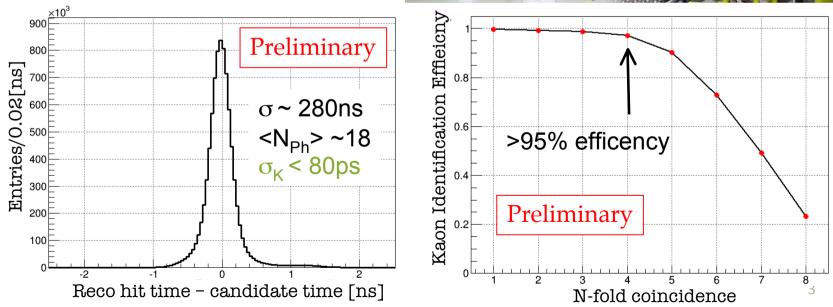
Extended NA62 Physics Program

Decay	Physics	Present limit (90% C.L.) / Result	NA62 Potential
$\pi^+\mu^+e^-$	LFV	1.3×10^{-11}	
$\pi^+\mu^-e^+$	LFV	5.2×10^{-10}	
$\pi^-\mu^+e^+$	LNV	5.0×10^{-10}	
$\pi^-e^+e^+$	LNV	6.4×10^{-10}	> 10-12
$\pi^-\mu^+\mu^+$	LNV	$1.1 imes 10^{-9}$	
$\mu^- \nu e^+ e^+$	LNV/LFV	2.0×10^{-8}	
$e^-\nu\mu^+\mu^+$	LNV	No data	
$\pi^+ X^0$	New Particle	$5.9 \times 10^{-11} m_{X^0} = 0$	10 ⁻¹²
$\pi^+\chi\chi$	New Particle	_	10 ⁻¹²
$\pi^+\pi^+e^-\nu$	$\Delta S \neq \Delta Q$	1.2×10^{-8}	10 ⁻¹¹
$\pi^+\pi^+\mu^-\nu$	$\Delta S \neq \Delta Q$	$3.0 imes 10^{-6}$	10-11
$\pi^+\gamma$	Angular Mom.	2.3×10^{-9}	10 ⁻¹²
$\mu^+ \nu_h, \nu_h \rightarrow \nu \gamma$	Heavy neutrino	Limits up to $m_{\nu_h} = 350 \ MeV$	
R _K	LU	$(2.488 \pm 0.010) \times 10^{-5}$	>×2 better
$\pi^+\gamma\gamma$	χPT	< 500 events	10 ⁶ events
$\pi^0\pi^0e^+\nu$	χPT	66000 events	O(10 ⁷)
$\pi^0\pi^0\mu^+\nu$	χPT	-	O(10 ⁶)

NA62: UK responsibilities (B=Birmingham)

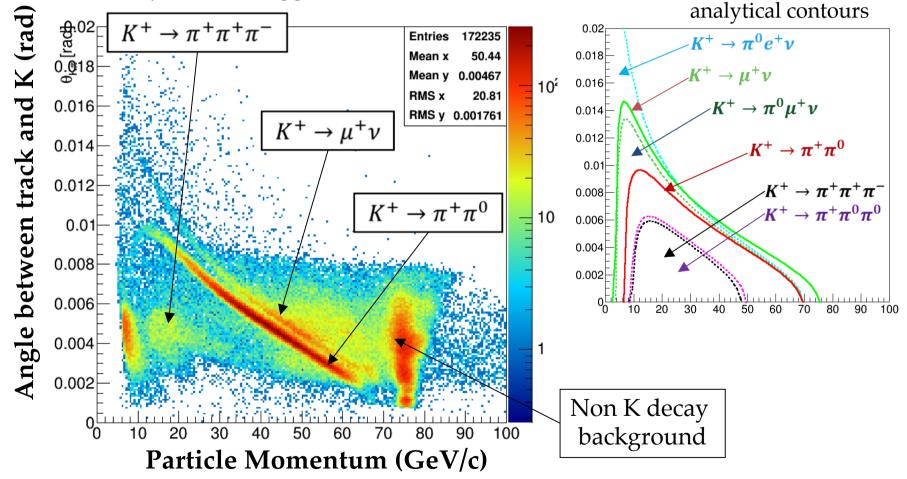
Hardware and trigger:

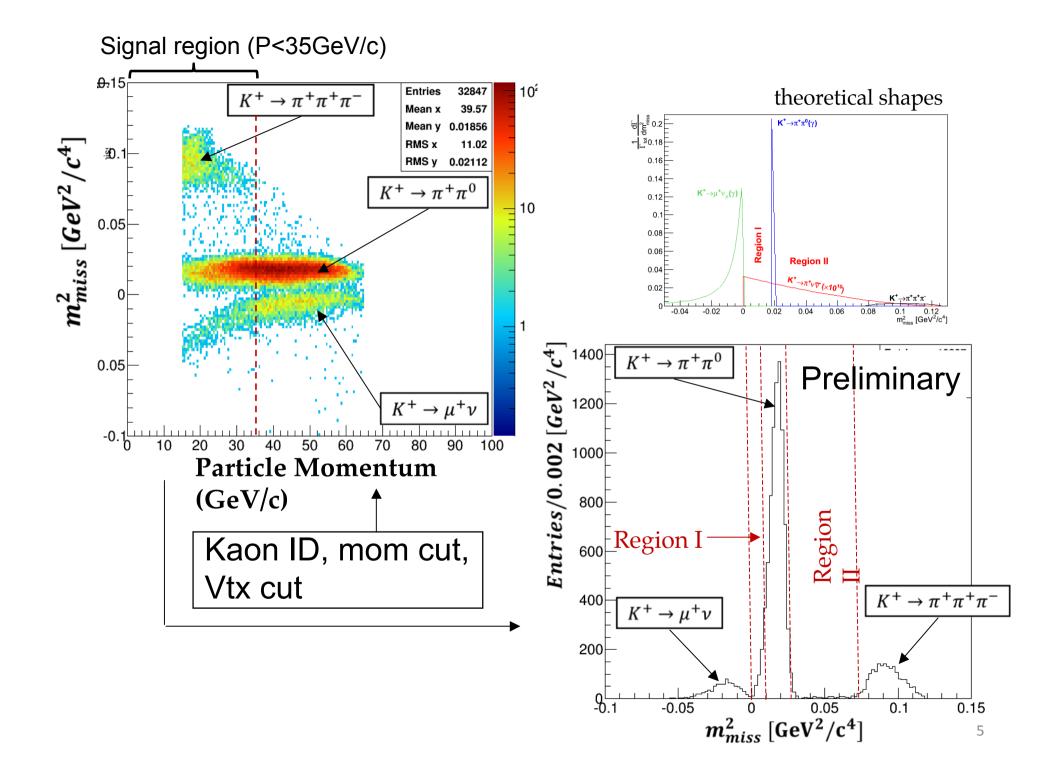
- full responsibility for the KTAG subdetector (B has a big role!!);
- development and operation of the L0 muon trigger (B);
- development and operation of the L1 trigger (B);


Physics programme:

- ♦ K⁺→ π^+ ν ν analysis
- ♦ lepton flavour and number conservation tests in $K^+ \rightarrow \pi \ell \ell$ decays (B);
- ♦ lepton universality tests in $K^+ \rightarrow \ell^+ v$ decays (B);
- peak searches: heavy neutral leptons, the dark photon (B); Coordination:
- co-convener of the lepton flavour working group (B);
- NA62 analysis coordinator;
- software coordinator (B);
- chair of the Conference Committee (B);
- members of the Editorial Board (3 out of 10) 2 out 10 in B
- Run Coordinators (2 out of 8 in B)

Kaon Identification KTAG


Detector completed And fully functioning



First Look at 2014 Data Quality

- Events with only 1 track in the spectrometer reconstructed (40 ns time window)
- ¹ ¹ ¹ ² muon rejection at trigger level.

Long-term future

★ Run 2015–2018: dedicated to K⁺→π⁺νν and other rare/forbidden K⁺ and π⁰ decays

SPS LS2: 2018-2019

- Run 2020–2023 (non-exclusive) possibilities:
- a) Upgrades to improve precision on $K^+ \rightarrow \pi^+ \nu \nu$ (~1000 SM events).
- b) Switch to neutral beam to pursue $K_L \rightarrow \pi^0 \ell^+ \ell^-$ and prototype studies for $K_L \rightarrow \pi^0 \nu \nu$. Need ~10 times higher SPS proton intensity (~10¹³ ppp), well within SPS capability. A dedicated working group set up.
- c) Optimize for heavy neutral lepton searches (trigger, shielding upstream of the decay volume, ...).

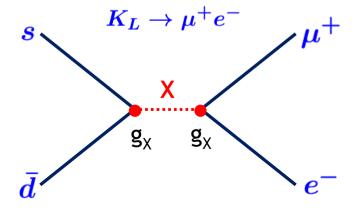
SPS LS3: 2024

Run 2025–2028 possibility:

Next generation $K_L \rightarrow \pi^0 v v$ experiment: significant detector R&D required.

NA62 Birmingham

People: **MB** Brunetti (V Fascianelli leaving) E Goudzovski C Lazzeroni N Lurkin (F. Newson leaving) **C** Parkinson A Romano A Sergi A Sturgess



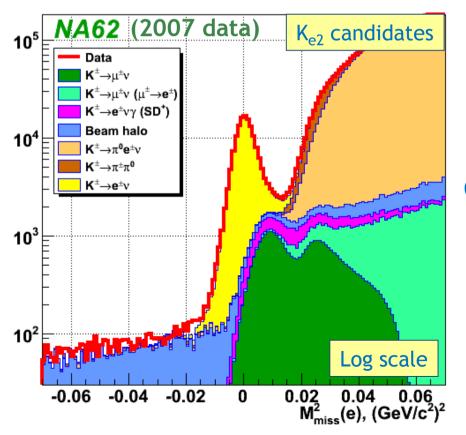
LFNV in K[±] and π^0 decays

NA62 single event sensitivities: $\sim 10^{-12}$ for K[±] decays, $\sim 10^{-11}$ for π^0 decays. (modest L0 downscaling factors might be required for di-leptons)

Mode	UL at 90% CL $$	Experiment	Reference
$K^+ o \pi^+ \mu^+ e^-$	$1.3 imes10^{-11}$	BNL E777/E865	PRD 72 (2005) 012005
$K^+ o \pi^+ \mu^- e^+$	$5.2 imes10^{-10}$]		
$K^+ o \pi^- \mu^+ e^+$	$5.0 imes10^{-10}$		PRL 85 (2000) 2877
$K^+ o \pi^- e^+ e^+$	$6.4 imes10^{-10}$,		
$K^\pm o \pi^\mp \mu^\pm \mu^\pm$	$1.1 imes10^{-9}$	CERN NA48/2	PLB 697 (2011) 107
$K^+ ightarrow \mu^- u e^+ e^+$	$2.0 imes10^{-8}$	Geneva-Saclay	PL 62B (1976) 485
$K^+ o e^- u \mu^+ \mu^+$	$\operatorname{no}\mathrm{data}$		
$\pi^0 o \mu^+ e^-$	$3.6 imes10^{-10}$	FNAL KTeV	PRL 100 (2008) 131803
$\pi^0 o \mu^- e^+$	$3.6 imes10^{-10}$		

* CERN NA48/2 sensitivities for these 3 modes are similar to those of BNL E865

Dimensional argument:


$$\frac{\Gamma_X}{\Gamma_{\rm SM}} \sim \left(\frac{g_X}{g_W} \cdot \frac{M_W}{M_X}\right)^4$$
$$g_X \approx g_W \quad \mathcal{B} \sim 10^{-12}$$
$$M_X \sim 100 \text{ TeV} \qquad 9$$

NA62-R_K: lepton universality

$$\mathrm{R}_{\mathrm{K}} \ = \ \frac{\Gamma(\mathrm{K}^{\pm} \to \mathrm{e}^{\pm} \nu)}{\Gamma(\mathrm{K}^{\pm} \to \mu^{\pm} \nu)} = \frac{m_{\mathrm{e}}^{2}}{m_{\mu}^{2}} \cdot \left(\frac{m_{\mathrm{K}}^{2} - m_{\mathrm{e}}^{2}}{m_{\mathrm{K}}^{2} - m_{\mu}^{2}}\right)^{2} \cdot \left(1 + \delta \mathrm{R}_{\mathrm{K}}^{\mathrm{rad.corr.}}\right)$$

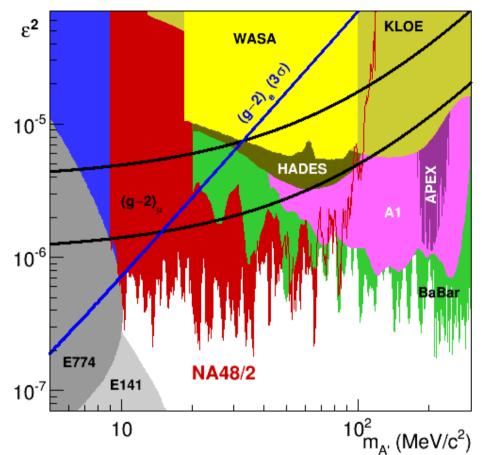
$$R_{K} = (2.488 \pm 0.010) \times 10^{-5}$$

PLB719 (2013) 326

Radiative correction (well known, few %) $\stackrel{S_v}{\longleftarrow} \stackrel{S_e}{\longleftarrow} \stackrel{\bullet}{\longleftarrow} \stackrel{\bullet}{\to} \stackrel{\bullet}{\to} \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\to} \stackrel{\bullet}{\to}$

Cirigliano and Rosell, PRL99 (2007) 231801

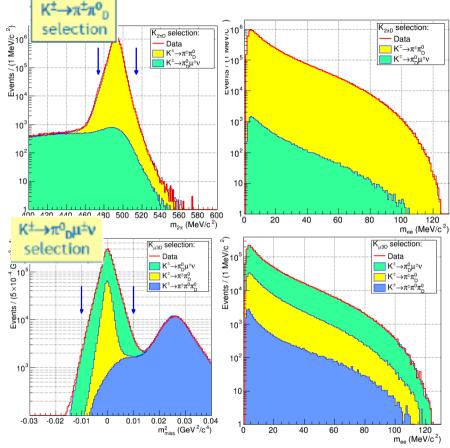
O(1%) effects due to sterile neutrinos or LFV Lacker and Menzel, JHEP 1007 (2010) 006; Abada et al., JHEP 1302 (2013) 048; Girrbach and Nierste, arXiv:1202.4906


NA62 prospects: improve precision by a factor ~2. Competitor: TREK@J-PARC (stopped K⁺; similar precision).

10

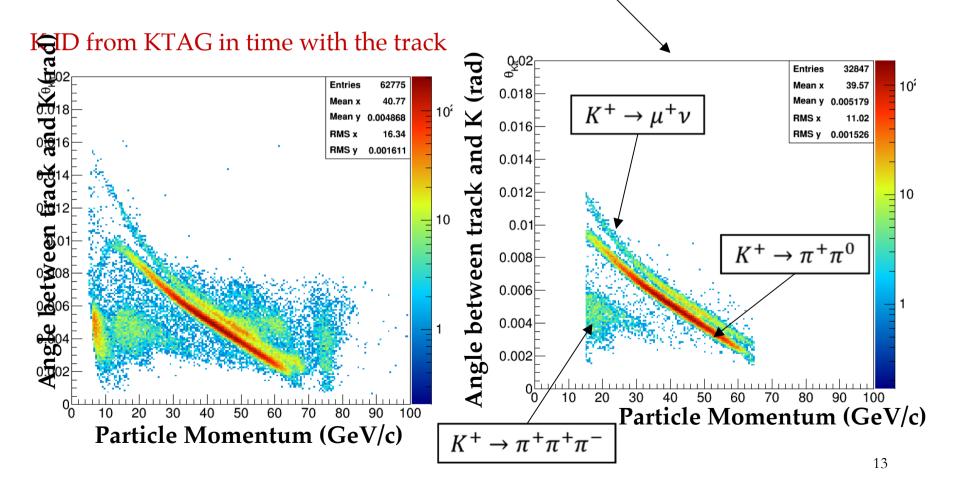
Heavy neutral leptons below M_K

NA62-R_K subsample: ~10M K⁺ $\rightarrow \mu^+ \nu_{\mu}$. Neutrino minimal SM (vMSM): "Peak search" for HNL: $K^+ \rightarrow \mu^+ N$. 3 heavy sterile RH Majorana vs $(N_{1,2,3})$. Sensitivity is limited by background $m_1 \sim 10 \text{ keV/c}^2$: dark matter candidate. fluctuation (mainly beam halo). $m_2 \sim m_3 \sim 1 \text{ GeV/c}^2$: ✤ Competitive at 0.30<M_N<0.38 GeV/c². observable in $K^{\pm} \rightarrow l^{\pm}N$, $D^{\pm} \rightarrow l^{\pm}N$ decays. ✤ NA62: larger sample and smaller bkg., Asaka & Shaposhnikov, PLB620 (2005) 17 $|U_{uN}| \sim 10^{-8}$ sensitivity in wider mass range. $K^+ \rightarrow \mu^+ N$ candidates, 2007 data $|\mathbf{U}_{\mu N}|^2$ Limits for heavy neutrino mixing 10⁶ 0.01 $K_{\mu3}$ ~10M $K_{\mu 2}$ events $K_{2\pi}$ 0.001 NA62-R_k data are K_{3π} 10⁵).0001 competitive in this interval beam halo 1e-05 π_{u2} K.,, 10⁴ K_{μ2} 2 Analysis in progress: 1e-06 Kuvw peaks expected for 1e-07 $|U_{uN}|^2 = 5 \times 10^{-5}$ 10³ K_{u2} 1e-08 K_{μ2} K_{u2} 10² **BBN** excluded 1e-09 1e-10 0 50 100 150 200 250 300 0 0.05 0.1 0.15 350 400 m2miss , GeV2/c4 Neutrino mass (MeV)

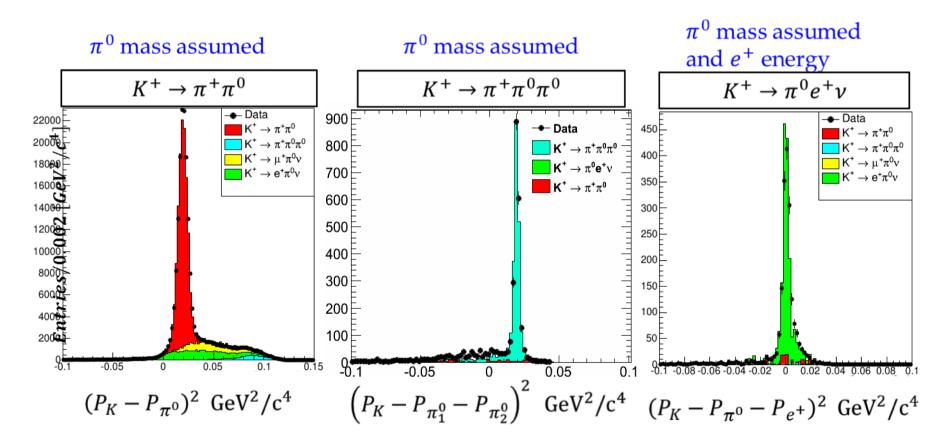

Search for Dark Photon in the "old" data

Improvements on existing limits for 9-70 MeV/c²

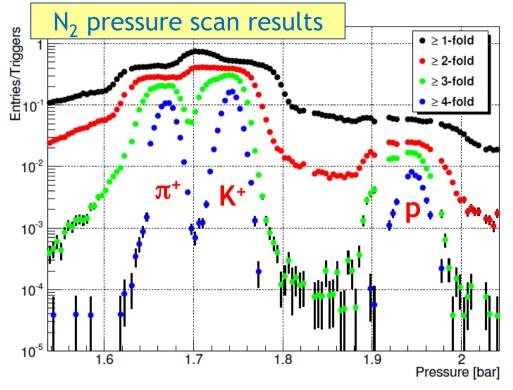
Sensitivity limited by irreducible π^0_D background


Published in Phys. Lett. B746 (2015) 178 Numerical UL data for each mass hypothesis available on HepData: http://hepdata.cedar.ac.uk/view/ins1357601

1.7 $10^7 \pi^0$ with negligible mean free path

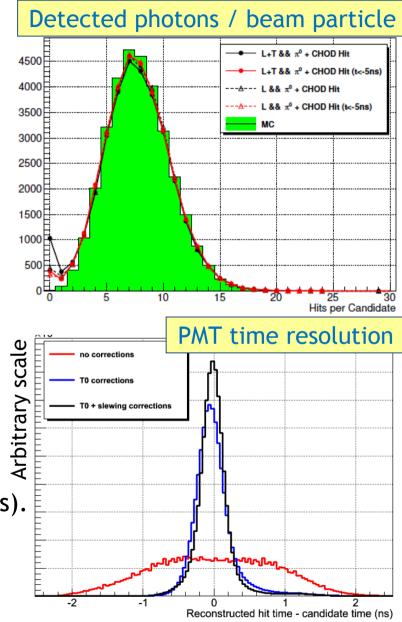

If DP couples to quarks and decays mainly to SM fermions, it's ruled out as explanation for anomalous $(g-2)_u$

- Apply KTAG for K ID
- Use track origin to suppress the background from kaon interactions
- Decay vertex from the intersection between the track and the nominal K direction to be in fiducial decay region and momentun cut



Examples of Control samples

- Kaon decay modes reconstructed with the liquid Krypton calorimeter only (from minimum bias data).
- **x** Useful to measure the kinematic suppression factor, particle ID efficiency ...



KTAG with 4 octants in 2012

- Pion, kaon and proton peaks are resolved.
- Mean number of detected photons per beam particle: ~8, similar to expectation. Mean number of detected photons per
- ✤ Measured PMT time resolution: 280 ps (rms).
- ✤ Kaon tag resolution: 100 ps,

will be improved with the 8-sector setup.

