Lepton Collider

- Increased interest in high energy e⁺e⁻ collider (Japan, CERN, China)
- STFC funded us for £75k/year travel money in 2015 and 2016 to reengage with international LC community
- Outlined three aspects
 - Silicon tracking (ex. LCFI, etc.)
 - DAQ (ex. Calice, EUDET, AIDA)
 - Calorimetry (ex. Calice) Birmingham

Lepton Collider R&D - DECAL Concept, CALICE

- Concept, swap ~0.5x0.5 cm² Si pads with small pixels ("Small" := at most one particle/pixel,1-bit ADC/pixel)
- How small to avoid saturation/non-linearity?
 - EM shower core density at 500GeV is ~100/mm²
 - Pixels must be<100×100 μ m²
 - Used baseline 50×50µm²
 - Gives ~10¹² pixels for ECAL "Tera-pixel APS"
 - Mandatory to integrate electronics on sensor

MAPS, MIP Efficiency

Project tracks to individual test sensors

Check for sensor hits as function of track (x,y) position relative to pixel centre

Determine efficiency by fitting distribution

- Efficiency for 4 sensor variants, from CERN (Aug.'09, 120 GeV π) and DESY (Mar.'10, 1-5 GeV e⁻) testbeams
- Standard CMOS sensors have low efficiency due to signal absorption by circuit elements
 - Deep p-well (INMAPS) reduces signal absorption, raises efficiency by factor ~5
 - (12μm) high-resistivity epitaxial layer raises efficiency by further factor ~x2

MAPS, MIP Efficiency

MAPS, MIP Efficiency

Project tracks to individual test sensors

Check for sensor hits as function of track (x,y) position relative to pixel centre

Determine efficiency by fitting distribution

- Efficiency for 4 sensor variants, from CERN (Aug.'09, 120 GeV π) and DESY (Mar.'10, 1-5 GeV e⁻) testbeams
- Standard CMOS sensors have low efficiency due to signal absorption by circuit elements

Deep p-well (INMAPS) reduces signal absorption, raises efficiency by factor ~5

(12μm) high-resistivity epitaxial layer
raises efficiency by *further* factor ~x2

MAPS for DECAL, (~)Shower Profile

Project tracks to individual test sensors

Vary depth of absorber thickness, study downstream hit multiplicity

Purely to cut cost - not ideal

- Study TPAC sensors as "calorimeter" layer
 - Peak of sensor activity vs. depth of material
- Single sensor study of EM shower response
- Electron beam shows expected log behaviour
- (NB: single sensor transverse size)

MAPS for DECAL, (~)Shower Profile

Cherwell tests

Sensor on daughter board

Firmware adaptation required for power cycling

PRD Bid...

Let's hope...