ep (and eA) Scattering, PRN, 2/9/13

H1: (JB, PRN, PDT)

- Experiment still publishing (e.g. HERA-II PDFs), but
ongoing Birmingham analysis ended ~ 2 years ago

- PRN has acted as internal referee for ~ 1 paper / year

LHeC: (PRN)

- Conceptual Design Report published July 2012.

- Not high on Euro Strategy list, but work still ongoing at
CERN and elsewhere on Energy Recovery Linac, magnets ...

- Recent UK meeting attended by 11 groups - Not the
right time to bid for funding. - Low level ongoing involvement

EIC: (Nobody)

- American project (most plausibly electrons in RHIC to
make eA collider at BNL) involves several ex-Birmingham nuclear
group members ... interest from current Birmingham colleagues
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The hadronic final state in alectron-proton collsions at HERA has provided a rich testing ground
for development of the theary of the strang force, QCD. In this review, over 200 publications from
the H1 and ZEUS Collaborations are summarisod. Short distance physies, the measurement of
processes at high enargy scales, has provided rigorous tests of perturbative QCD and constrained
the structure of the proton aswell unﬂwmgpru:mmmmoﬂhamquuphngm

Deep Inelastic scattering — using a twenty-first-century electron-hadron collider of sufficlent energy and
Intensity — could teach us much more about nuclear matter at the smallest resolvable scales, as well as
add to our understanding of the Higgs boson and to the search for physics beyond the standard model.
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Ernest Rutherford famously declared

it "almost as incredible as if you fired

a fifteen.inch shell at a piece of tissue

paper and it came back and hit you”, By
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In a Jess famous later quote?, addressing
a Royal Society anniversary meeting as

its President, Rutherford commented
prophetically, "It would be of great scientific
interest if it were possible in experiments
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to have a supply of electrons of which the
of motion is

produxing a beam of 20-GeV particles,
yielded another unexpected and paradigm -
changing discovery: the first direct
evidence! for the existence of quarks.

‘This ‘decp inelastic scattering’ (DIS)
of electrons from the electrically charged
substructure of the proton has since
evolved into the collider era with the
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