

Searches for low mass BSM physics at ATLAS

Lake Louise Winter Institute 2025

Antonio Sidoti Antonio.sidoti@bo.infn.it

Istituto Nazionale Fisica Nucleare – Sezione di Bologna on behalf of the ATLAS Collaboration Going to **lower** mass: Explore **smaller** couplings regions

- Triggering more difficult
- High momentum system → boosted topologies (tau lepton and b-tagging challenging)

ATL-PHYS-PUB-2024-10

04/03/2025

Outline

- Single Resonances
 - t \rightarrow qX with X \rightarrow bb JHEP 07 (2023) 199
 - Z' + Initial State Radiation JHEP 01 (2025) 099 and Phys Rev D (2024) 032002
 - $H_{SM} \rightarrow Za arXiv:2411.16361$
 - $H \rightarrow \gamma \gamma$ JHEP 07 (2023) 155
- Resonance pairs
 - $H \rightarrow aa \rightarrow final states$
- Not so "low mass" ...
 - Four leptons + X/E_{T,Miss} JHEP 10 (2024) 130

- Single Resonances
 - t \rightarrow qX with X \rightarrow bb JHEP 07 (2023) 199
 - Z' + Initial State Radiation JHEP 01 (2025) 099 and Phys Rev D (2024) 032002
 - H_{SM} → Za arXiv:2411.16361
 - $H \rightarrow \gamma \gamma$ JHEP 07 (2023) 155
- Resonance pairs
 - $H \rightarrow aa \rightarrow final states$
- Not so "low mass" ...
 - Four leptons + X/E_{T,Miss} JHEP 10 (2024) 130

t→ Xq with X→bb

Look for X scalar (H_{BSM}) decaying in $X \rightarrow b\overline{b}$ in top pair associated process. Two options $t \rightarrow uX$ and $t \rightarrow cX$ (FCNC process)

Multijet events with multi b-jets

Use pDNN to distinguish sig vs bkg

04/03/2025

A. Sidoti

5/15

Dijet + ISR

JHEP 01 (2025) 099

Boosted Regime:

Single hard photon (>150 GeV) trigger One large R=1 jet (back to back) \rightarrow huge QCD background Signal regions defined by D₂ and η_y

Phys Rev D 110 (2024) 032002

Resolved Regime:

standard bump-hunt search on dijet mass spectrum (m_{jj} or m_{bb}) $\rightarrow p_{T,y}$ >150 Gev or $P_{T,J1}$ >475 GeV background estimated from functional fit to data \rightarrow search for narrow width signals (width/mass<15%) optimise event selection, aiming simultaneously at:

- smoothly falling background shape
- increase S/B ratio

04/03/2025

A. Sidoti

6 / 15

H_{SM}→ Za

Observed (Expected) limit BR(H \rightarrow invisible) is 10.7 (7.7)% from PLB 842 (2023) 137963

 $\begin{array}{c} a \\ h_{125} - 0 \\ Z \\ \ell^+ \end{array}$

arXiv:2411.16361

Search for a light resonance produced in association with a Z boson from SM higgs decays

- Mass range 0.5-4 GeV, focusing at low masses
- a decays hadronically, reconstructed as a single jet (large boost)
- Z leptonic decays
- Background mainly from Z + jets Targeting 2HDMS(s) or ALP

Background reweighting

04/03/2025

A. Sidoti

$X \rightarrow \gamma \gamma$

Gap at low masses in yy resonant searches arXiv: 1702.02152

 \rightarrow Poorly explored region ~5 to ~80 GeV

Low mass 10GeV<M_x<70GeV

Additional selection P_t^{yy} > 50 GeV to reduce trigger simulation uncertainties for collimated photon Background template: yy (from MC) +yj (data driven) \rightarrow analytical function

A. Sidoti

- Single Resonances
 - t → qX with X → $b\overline{b}$ JHEP 07 (2023) 199
 - Z' + Initial State Radiation JHEP 01 (2025) 099 and Phys Rev D (2024) 032002
 - H_{sm} → Za arXiv:2411.16361
 - $H \rightarrow \gamma \gamma$ JHEP 07 (2023) 155
- Resonance pairs
 - $H \rightarrow aa \rightarrow final states$
- Not so "low mass" ...
 - Four leptons + X/E_{T,Miss} JHEP 10 (2024) 130

Resonance Pairs

Addressing topologies with pairs of BSM particles decaying in various final states

√s=8 TeV

√s=13 TeV (part)

√s=13 TeV (full)

arXiv:2412.14046

H_{SM}→aa→γγτ_hτ_h

Events / GeV

Data-Fit σ 12F

- Based on $X \rightarrow \gamma \gamma$ search
- \rightarrow In addition two hadronically decaying taus (boosted)
- Due to $E_{T,Miss}$ m($\tau\tau$) not used in fit Only in event selection (BDT)
- \rightarrow only m(yy) in fit
- Main background:
- Irreducible γγ

 (includes also ττ fakes)
- Reducible yj and jj

04/03/2025

arXiv:2410.16781

12 / 15

$S \rightarrow Z_d Z_d \rightarrow 4$ leptons

Searching for additional dark Z in eeee, $\mu\mu\mu\mu$ or ee $\mu\mu$ pairs

 \rightarrow Two m₄₁ invariant regions 15<m₄₁<115 GeV and 130<m₄₁<800 GeV

Dominant background $ZZ^* \rightarrow 4I$ from MC Z+jets and $t\bar{t}$ smaller contribution estimated from data

- Single Resonances
 - t → qX with X → $b\overline{b}$ JHEP 07 (2023) 199
 - Z' + Initial State Radiation JHEP 01 (2025) 099 and Phys Rev D (2024) 032002
 - $\quad H_{\text{SM}} \ \rightarrow \ Za \ arXiv:2411.16361$
 - $H \rightarrow \gamma \gamma$ JHEP 07 (2023) 155
- Resonance pairs
 - $H \rightarrow aa \rightarrow final states$
- Not so "low mass" ...
 - Four leptons + X/E_{T,Miss} JHEP 10 (2024) 130

Four leptons + X/E_{T,Miss}

Final state from resonance + H \rightarrow ZZ \rightarrow 4 leptons (M₄)>200 GeV) Three SR according to n_{iet}

multiplicity, $E_{T,Miss}$ and P_T^{4I}

R(CP-even) in [390,1300] GeV H(CP-even) in [220,1000] GeV m(S) set at 160 GeV

JHEP 10 (2024) 130

Summary

- Beyond Standard Model Physics can hide at low mass with small couplings
- ► Large integrated luminosity → Exploit the largest datasets ever collected by LHC at the highest center of mass energy
- Improving reconstruction and analysis techniques enhances BSM searches sensitivity
- Run3 data are being studied
- Some intriguing discrepancies to be followed up in Run3