

Hadronic Cross Section Measurements using Initial State Radiation

Lake Louise Winter Institute Lake Louise, Canada February 24, 2023

Georges Vasseur georges.vasseur@cea.fr

on behalf of the BABAR Collaboration

- Lepton anomalous magnetic moment: $a_l = \frac{1}{2}(g - 2)_l$
- Precise test of the Standard Model
- Long-standing discrepancy between theory and experiment for the muon (g-2)

The g-2 puzzle

Dispersive approach

• Dominant uncertainty on (g-2) calculation from leading order hadronic vacuum polarization

Calculation needs experimental inputs

Hadronic cross sections and g-2

- At low energy total hadronic cross section determined from finite sum of exclusive modes
- The $e^+ e^- \rightarrow \pi^+ \pi^- \pi^0$ mode contributes 7% to a_{μ}^{had} and 19% to its uncertainty (the second largest).

Cross sections from BABAR

- Comprehensive program of cross section measurements in BABAR
- Most recent results
 - $e^+ e^- \rightarrow \pi^+ \pi^- \pi^0$
 - Phys. Rev. D 104 (2021), 112003
 - $e^+ e^- \rightarrow \pi^+ \pi^- 4\pi^0$
 - Phys. Rev. D 104 (2021), 112004
 - $e^+ e^- \rightarrow 2(\pi^+ \pi^-) 3\pi^0$
 - Phys. Rev. D 103 (2021), 092001
 - e⁺ e⁻ → K K π π π
 - arXiv:2207,10340 (2022)

Detector and data sample

- Photon emitted from e⁺ or e⁻ as Initial State Radiation (ISR).
 - allows to measure cross sections at low energy.
- Hadronic system boosted and back to back with photon.
 - Good detection even at threshold.
 - In detector acceptance: fully reconstructed.

$e^+ e^- \rightarrow \pi^+ \pi^- \pi^0$ selection

- Analysis on the full BABAR dataset (469 fb⁻¹).
- ISR γ : γ with highest energy over 3 GeV.
- Exactly 2 "good" tracks (opposite sign).
- At least 2 additional photons.
- 0.10 < m_{vv} < 0.17 GeV
- Kinematic fit.
- Further cuts to reduce backgrounds.

Expected mass spectrum

- Sharp structure of the mass spectrum below 1.1 GeV.
 - over 4 orders of magnitude.
- Unfolding the detector resolution effects is essential.

Measured mass spectrum

- Fit using Vector Dominance Model
 - including $\rho(770)+\omega(782)+\phi(1020)$ $+\omega(1420)+\omega(1680)$
 - overall fit shown in different mass ranges
- Best fit (in black) including ρ(770)
- Alternate fit (in red) with no ρ(770)

Phys. Rev. D 104, 112003 (2021)

Fit results

	BABAR	Previous measurement
$\Gamma(\omega \rightarrow e^+e^-) \times B(\omega \rightarrow \pi^+\pi^-\pi^0)$	0.5698 ± 0.0031 ± 0.0082 keV	0.557 ± 0.011 keV (PDG)
$\Gamma(\phi \rightarrow e^+e^-) \times B(\phi \rightarrow \pi^+\pi^-\pi^0)$	0.1841 ± 0.0021 ± 0.0080 keV	0.1925 ± 0.0043 keV (PDG)
<i>Β</i> (ρ→π⁺π⁻π⁰)	(0.88 ± 0.23 ± 0.30) 10 ⁻⁴	$(1.01 \stackrel{+0.54}{_{-0.34}} \pm 0.34) 10^{-4}$ (SND)
$(\Phi_{\rho}-\Phi_{\omega})$	-(99 ± 9 ± 15)°	-(135 ⁺¹⁷ ₋₁₃ ± 9)° (SND)

Phys. Rev. D 104, 11203 (2021)

- BABAR results in agreement with previous values.
- Rare decay $\rho \rightarrow \pi^+ \pi^- \pi^0$ observed with significance greater than 6 σ .

Relative cross section differences of $e^+ e^- \rightarrow \pi^+ \pi^- \pi^0$ below 1.1 GeV

Good Agreement

 Δ (SND-BaBar) = 2% Δ (CMD-2-BaBar) = 7% Good agreement

 Δ (SND-BaBar) = 11% Δ (CMD-2-BaBar) = 3%

BABAR: Phys. Rev. D 104, 112003 (2021)

Systematic uncertainty ~ 1.3% on ω and φ dominated by detection efficiency

SND: PRD 63, 72002 (2001), PRD 68, 52006 (2003) CMD-2: PLB 578, 285 (2004), PLB 642, 203 (2006)

$e^+ e^- \rightarrow \pi^+ \pi^- \pi^0$ cross section above 1.1 GeV

- Systematic uncertainty 4-15%, dominated by background.
- Good agreement between SND and BABAR with localized differences around 1.25 GeV and 1.5 GeV.

$e^+ e^- \rightarrow \pi^+ \pi^- 4\pi^0$ cross section

- Measured for the first time
- Similar technique to $\pi^+ \pi^- \pi^0$
- Same integrated luminosity (469 fb⁻¹)
- Also measured
 - Intermediate states:
 - $e^+ e^- \rightarrow \pi^+ \pi^- \pi^0 \eta (\rightarrow 3\pi^0)$
 - $e^+ e^- \rightarrow \omega (\rightarrow \pi^+ \pi^- \pi^0) 3\pi^0$
 - $e^+ e^- \rightarrow \omega (\rightarrow \pi^+ \pi^- \pi^0) \eta (\rightarrow 3\pi^0)$
 - Related state:
 - $e^+ e^- \rightarrow \pi^+ \pi^- 3\pi^0 \eta(\rightarrow \gamma \gamma)$

Phys. Rev. D 104, 112004 (2021)

$e^+ e^- \rightarrow 2(\pi^+ \pi^-) 3\pi^0$ cross section

- Measured for the first time
- Similar technique to $\pi^+ \pi^- \pi^0$
- Same integrated luminosity (469 fb⁻¹)
- Also measured
 - Intermediate states:
 - $e^+ e^- \rightarrow 2(\pi^+ \pi^-) \eta(\rightarrow 3\pi^0)$
 - $e^+ e^- \rightarrow \eta (\rightarrow \pi^+ \pi^- \pi^0) \pi^+ \pi^- 2\pi^0$
 - $e^+ e^- \rightarrow \omega (\rightarrow \pi^+ \pi^- \pi^0) \pi^+ \pi^- 2\pi^0$
 - Related state:
 - $e^+ e^- \rightarrow 2(\pi^+ \pi^-) 2\pi^0 \eta(\rightarrow \gamma \gamma)$

Phys. Rev. D 103, 092001 (2021)

$e^+ e^- \rightarrow K K \pi \pi \pi \pi$ cross sections

- Measured for the first time
- Similar technique to $e^+ e^- \rightarrow \pi^+ \pi^- \pi^0$
- Same integrated luminosity (469 fb⁻¹)
- Also measured: modes with intermediate resonances η, ρ, K*

Impact on g-2

- $e^+ e^- \rightarrow \pi^+ \pi^- 3\pi^0$, $2(\pi^+ \pi^-) 3\pi^0$, K K $\pi \pi \pi$
 - Measured for the first time
 - Contribute < 0.5% to a_{μ}^{had} to and <1.5% to its uncertainty
- $e^+ e^- \rightarrow \pi^+ \pi^- \pi^0$
 - Second largest contributor to uncertainty on a^{had}
 - Uncertainty on its contribution reduced by a factor 2

Summary

- Using the ISR technique BABAR does precision studies of low energy e⁺e⁻ annihilations.
- Long history of cross section measurements.
- Most recent results
 - precision measurement in $e^+ e^- \rightarrow \pi^+ \pi^- \pi^0$ mode,
 - first measurements in several high multiplicity modes.
- Contribute to improve (g-2) calculation.