Rare *B* decays with leptons at Belle

Daniel Ferlewicz daniel.ferlewicz@unimelb.edu.au

On behalf of the Belle collaboration Lake Louise Winter Institute 2023

Big questions for flavour physics

Big questions for flavour physics

- There is an asymmetry in the matter and anti-matter in the observed universe
- CP violation means that matter and anti-matter can behave differently
- Belle's main goal was to search for CP violation in *B*-decays

The Belle experiment

Lepton flavour violation

Lepton number is conserved without neutrino oscillations

LFV possible in principle with neutrino mixing:

- SM rate is significantly below any current experimental sensitivity.
- New physics models such as Higgs-mediation [1] can predict higher rates at $\mathcal{B} \approx 10^{-9}$

[1] Dedes, et al. Phys.Lett.B 549 (2002)

Tagging

- Fully reconstruct one of the *B*-mesons, "Full Event Interpretation", which can be used to determine missing momentum
- Tag-side can be reconstructed from one of $\mathcal{O}(10^3)$ hadronic modes in a neural network [2,3]
- Efficiency between 0.1 0.3% depending on desired purity (confidence score)
- Also useful for determining *B*-meson flavour for CP-violation measurements

[2] Feindt, et al. NIM A 654, 432 (2011)[3] Keck, et al. Comput. Softw. Big Sci. 3 (2019) 1, 6

• $B^0 \rightarrow \tau^{\pm} \ell^{\mp}$:

- Hadronic tagging algorithm threshold determined with Punzi Figure of Merit
- Only the light lepton on the signal-side is reconstructed
- Fit to the missing mass
- $B_s^0 \rightarrow \tau^{\pm} \ell^{\mp}$: New result!
 - Measured using $e^+e^- \rightarrow \Upsilon(5S) \rightarrow B_S^{(*)0} \overline{B}_S^{(*)0}$, $B_S^{*0} \rightarrow B_S^0 \gamma$ (~16.6 × 10⁶ B_S mesons)
 - $B^0_S \to D^+_S \ell^-(X) \bar{\nu}_\ell$ used as a tag, reconstructed ℓ from $\tau^+ \to \ell^+ \bar{\nu}_\tau \nu_\ell$
 - Classifier trained for signal against continuum and combinatorial background
 - Fit to the primary light lepton momentum

	BaBar	CLEO	LHCb	Belle		p _e (GeV/c)
$B_s^0 \to \tau^{\mp} e^{\pm}$	-	-	-	$< 14.1 \times 10^{-4}$ arXiv:2301.10989	Leading systema	tic uncertainties
$B^0_s \to \tau^\mp \mu^\pm$	-	-	$< 3.4 imes 10^{-5}$ PRL 123, 211801 (2019)	< 7.3 × 10 ⁻⁴ arXiv:2301.10989	$B^0 \to \tau^\pm e^\mp$	$B_s^0 \rightarrow \tau^{\pm} e^{\mp}$
$B^0_d ightarrow au^\mp e^\pm$	$< 2.8 \times 10^{-5}$	$< 1.3 \times 10^{-4}$	-	$< 1.6 \times 10^{-5}$	Tagging (4.5%)	$N_{B_{S}\bar{B}_{S}}$ (16.1%)
a 7 1	PRD 77, 091104R (2008)	PRL 93, 241802 (2004)		PRD 104, L091105 (2021)	Lepton ID (1.6%)	Tagging (15%)
$B^0_d o au^+ \mu^\pm$	$< 2.2 imes 10^{-5}$ prd 77, 091104r (2008)	$< 3.8 imes 10^{-5}$ prl 93, 241802 (2004)	$< 1.2 imes 10^{-5}$ prl 123, 211801 (2019)	$< 1.6 \times 10^{-5}$ PRD 104, L091105 (2021)	$N_{Bar{B}}$ (1.4%)	Lepton ID (4.3%

Electroweak penguin decays

- Rarity of the $b \rightarrow s$ loop transition means these decays are an excellent probe for physics beyond the Standard Model
- Tensions in lepton flavour universality tests have reduced [4], but tension from angular analyses remains

[4] LHCb, arXiv:2212.09152 (2022)

 $B \rightarrow K^{(*)} \ell \ell$

- Tests of lepton flavour universality: $R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu^{+}\mu^{-})}{\mathcal{B}(B \to K^{(*)}e^{+}e^{-})}$
- Results found away from $c\bar{c}$ resonances are consistent with SM predictions
- In both studies lepton ID is dominant of the few remaining uncertainties
- Lepton flavour violation study also performed:

Decay	BaBar PRD 73, 092001 (2006)	Belle JHEP 03 (2021) 105
$B^+ \rightarrow K^+ \mu^+ e^-$	$< 1.3 \times 10^{-7}$	$< 8.5 \times 10^{-8}$
$B^+ \rightarrow K^+ \mu^- e^+$	$< 9.1 \times 10^{-8}$	$< 3.0 \times 10^{-8}$
$B^0 \to K^+ \mu^\pm e^\mp$	$< 2.7 \times 10^{-7}$	$< 3.8 \times 10^{-8}$

- $B^+ \to K^+ \tau^\pm \ell^\mp$
- Translate Belle data into the Belle II analysis software framework [5] so that the newer hadronic tag FEI can be used
- Trained machine learning classifiers for $B\bar{B}$ and continuum suppression
- Fit to the recoil mass

Decay	Collaboration	BR 90% upper C.L.
$B^+ \to K^+ \tau^\pm \ell^\mp$	BaBar PRD 86, 012004 (2012)	$< 4.5 \times 10^{-5}$
$B^+ \to K^+ \tau^\pm \mu^\mp$	LHCb JHEP 06 129 (2020)	$< 3.9 \times 10^{-5}$
$B^+ \to K^+ \tau^+ \mu^-$		$< 0.59 \times 10^{-5}$
$B^+ \to K^+ \tau^- \mu^+$	Belle	$< 2.45 \times 10^{-5}$
$B^+ \to K^+ \tau^+ e^-$	arXiv:2212.04128	$< 1.51 \times 10^{-5}$
$B^+ \to K^+ \tau^- e^+$	(2022)	$< 1.53 \times 10^{-5}$

[5] Gelb, et al. Comput. Softw. Big Sci. 2 (2018) 1, 9

 $B^+ \rightarrow K^+ \tau e^+$

$B \rightarrow K^* \tau^+ \tau^-$

• Can be used with $R(K^*)$ results for more LFU tests

- Signal reconstructed with $\tau^+ \to e^+ \nu_e \bar{\nu}_{\tau}, \tau^+ \to \mu^+ \nu_\mu \bar{\nu}_{\tau}$ and $\tau^+ \to \pi^+ \bar{\nu}_{\tau}$; 6 unique combinations
- Further continuum suppression with thresholds on event-shape variables
- Binned fit to the extra energy in the ECL
- First ever measurement of this mode!

Decay	BR 90% C.L.
$B^+ ightarrow K^+ au^+ au^-$ BaBar, PRL 118, 031802 (2017)	$< 2.25 \times 10^{-3}$
$B^0 o K^{*0} au^+ au^-$ Belle, arXiv:2110.03871 (2017)	$< 2.0 imes 10^{-3}$ (Preliminary)

Leading systematic uncertainties
Tagging (4.6%)
Electron ID (2.48%)
Muon ID (2.03%)

Improving lepton identification

• Modern machine learning techniques can be used to boost performance

BDT input variables

 5×5 crystal grid

Ratio of ECL energy between 3×3 and

Ratio of energy deposited and

Angular analysis of $B \rightarrow K^* e^+ e^-$ at low q^2

- Reconstruct with $K^{*0} \to K^+\pi^-$ and $K^{*+} \to K^0_S\pi^+$ channels
- Fit the differential decay rate as a function of angular observables

$$\left\langle \frac{d^4\Gamma}{dq^2d\cos\theta_\ell d\cos\theta_K d\phi} \right\rangle_{\rm CP} = \frac{9}{16\pi} \left(\frac{3}{4} (1-F_L)\sin^2\theta_K + F_L\cos^2\theta_K + \left(\frac{1}{4} (1-F_L)\sin^2\theta_K - F_L\cos^2\theta_K\right)\cos 2\theta_\ell + \frac{1}{2} (1-F_L)A_T^{(2)}\sin^2\theta_K\sin^2\theta_\ell\cos 2\phi + (1-F_L)A_T^{\rm Re}\sin^2\theta_K\cos\theta_\ell + \frac{1}{2} (1-F_L)A_T^{\rm Re}\sin^2\theta_K\sin^2\theta_\ell\sin 2\phi \right).$$

 $A_T^{\rm Re} = \frac{I_6^s}{4I_2^2} = \frac{4A_{\rm FB}}{3(1-F_L)} \quad \text{Forward-backward asymmetry}$

 $A_T^{\rm Im} = \frac{I_9}{2I_2^s} \stackrel{q^2 \to 0}{=} \frac{2\Im(\mathcal{C}_7^{\rm eff}\mathcal{C}_7'^{\rm eff*})}{|\mathcal{C}_7^{\rm eff}|^2 + |\mathcal{C}_7'^{\rm eff*}|^2}$ $A_T^{(2)} = \frac{I_3}{2I_2^s} \stackrel{q^2 \to 0}{=} \frac{2\Re(\mathcal{C}_7^{\rm eff}\mathcal{C}_7'^{\rm eff*})}{|\mathcal{C}_7^{\rm eff}|^2 + |\mathcal{C}_7'^{\rm eff*}|^2}$

Expected to be zero unless there is some complex phase being introduced

Expected to be zero unless there is a righthanded current contribution

- bservables P B^0 R^+ K^* $\ell^ \ell^-$
- Independent check of LHCb result [6] with improved lepton ID
- $0.0008 < q^2 < 1.12 \text{ GeV}^2/c^4$ used to match upper threshold from 2015 LHCb analysis [7]

[6] LHCb, JHEP 12 (2020) 081 [7] LHCb, JHEP 04 (2015) 064

Expected sensitivity to new physics

- Fit to the differential decay rate and use results to constrain $\mathcal{C}_7^{(\prime)}$
- Ready for unblinding soon
- Potential future inclusion of $B \rightarrow K^* \gamma (\rightarrow e^+ e^-)$ for additional constraint on photon polarisation looks viable

Summary

- Lots of recent results of rare *B* decays!
- Lepton flavour violation studies:
 - $\mathcal{B}(B^0_{(s)} \to \tau^{\pm} \ell^{\mp}) \text{first search for } B^0_s \to \tau^{\pm} e^{\mp}$
 - $\mathcal{B}(B^+ \to K^+ \tau^{\pm} \ell^{\mp})$ broken down into all $\tau^{\pm} \ell^{\mp}$ combinations
 - $\mathcal{B}(B \to K\mu^{\pm}e^{\mp})$ best constraints to date
- Lepton flavour universality
 - $R(K^{(*)})$ has remained consistent with the Standard Model
 - $\mathcal{B}(B \to K^* \tau^{\pm} \tau^{\mp})$ first constraint for this decay mode
- $B \rightarrow K^* e^+ e^-$ angular analysis for low q^2 unblinding soon
- Upgraded Belle lepton ID will help push Belle + Belle II studies in the future

Back up

DANIEL FERLEWICZ, THE UNIVERSITY OF MELBOURNE, LLWI 2023

- **BDT** inputs: ٠
 - Non-primary lepton momenta
 - Extra energy from non-reconstructed tracks and clusters
 - Sum of energy of tracks and clusters
 - Missing energy
 - Absolute missing invariant mass squared
 - Cosine of angle between ℓ_1 and ℓ_2
 - D_s^+ mass
 - Modified Fox-Wolfram moments

		PNU LINEAUE							
.70.80.9 1	0 0.10.2	2 0.3 0.4 0.5	0.6 0.7 0.8 0.9 1		Source	B_s	$\rightarrow e^- \tau^+$	$B_s \rightarrow$	$\rightarrow \mu^- \tau^+$
FastBDT Output				$\overline{B}{}^0_s$ -	$\rightarrow D_s^+ \ell^- \overline{\nu}_\ell \mathrm{tag}$		15.0	1	5.0
gnal selecti	on BDT:		Fast	FastBDT selection		3.3	9	3.7	
()()	(2) (2) (2) (2) (2) (2) (2)	$\mathbf{B} \rightarrow \mathbf{u}\tau$			Lepton ID		4.3		3.5
$\mathbf{S}_{u,d}^{(r)} \overline{\mathbf{B}}_{u,d}^{(r)} \mathbf{X}$	0 1.8 2	s fat			Tracking		0.7	().7
ignal	<u> </u>		signal	$ \tau \to \ell \nu_\tau \overline{\nu}_\ell$	branching frac	etion	0.2	0).2
	0.1.2		y Jaia	N	umber of B_s		16.1	1	6.1
	15 ()				Total		22.7	2	2.6
	0.6		-						
	ú 0.4⊨ 0.2⊨ 🕅				ϵ (%)	$N_{\rm bkg}^{\rm exp}$	$N_{\rm obs}$	\mathcal{B}	$f_s \times \mathcal{B}$
	0							$(\times 10^{-4})$	$(\times 10^{-4})$
2.8 3	2	2.2 2.4	2.6 2.8 3	$B_s \to e^- \tau^+$	0.0312 ± 0.0071	0.68 ± 0.69) 3	< 14.1	< 5.5
p ₁ (GeV/c)			p, (GeV/c)	$B_s \rightarrow \mu^- \tau^+$	0.0303 ± 0.0068	0.77 ± 0.78	3 1	< 7.3	< 2.9

 $\mathbf{B}^{+} \rightarrow \mathbf{K}^{+} \tau^{+} \mu^{-}$

 $^+ \rightarrow K^+ \tau^{\pm} \ell^{-}$

Mode	ε (%)	$\varepsilon^{\mathrm{NP}}$ (%)	$N_{ m sig}$	$\mathcal{B}^{\mathrm{UL}} \; (10^{-5})$
$B^+ \to K^+ \tau^+ \mu^-$	0.064	0.058	-2.1 ± 2.9	0.59 (0.65)
$B^+ \to K^+ \tau^+ e^-$	0.084	0.074	1.5 ± 5.5	1.51(1.71)
$B^+ \to K^+ \tau^- \mu^+$	0.046	0.038	2.3 ± 4.1	2.45(2.97)
$B^+ \to K^+ \tau^- e^+$	0.079	0.058	-1.1 ± 7.4	1.53(2.08)

- $B\overline{B}$ BDT inputs:
 - Kaon-track invariant mass
 - No. ECL clusters and energy in rest of event

Normalized

- Extended Fox-wolfram moments
- Decay vertex distances
- Distance between kaon and each other signal track
- $q \overline{q}$ BDT inputs:
 - *R*₂
 - CLEO cones
 - Thrust axis angle
 - Other event shape variables

 $\mathbf{B}^{+} \rightarrow \mathbf{K}^{+} \tau^{+} \mu^{-}$

$B^+ \to K^+ \tau^\pm \ell^\mp$

Source	$K^+ \tau^+ \mu^-$	$K^+\tau^+e^-$	$K^+ \tau^- \mu^+$	$K^+\tau^-e^+$
Additive (events)				
PDF shape (mean)	0.09	0.01	0.08	0.08
PDF shape (width)	0.02	0.08	0.04	0.07
PDF shape (f_{sig})	0.28	0.16	0.11	0.16
Linearity	0.03	0.04	0.02	0.04
Total	0.30	0.18	0.14	0.20
Multiplicative (%)				
$B_{\rm tag}$ calibration	5.9	5.9	5.9	5.9
Track reconstruction	1.1	1.1	1.1	1.1
Kaon id.	1.3	1.4	1.3	1.3
Lepton id.	0.3	0.4	0.3	0.4
τ daughter id.	0.7	0.7	0.6	0.6
MC statistics	1.0	1.5	1.2	1.0
Number of $B\overline{B}$ pairs	1.4	1.4	1.4	1.4
BDT $B\overline{B}$ selection	10.6	10.0	12.7	12.6
BDT $q\overline{q}$ selection	8.8	8.6	9.2	6.6
f^{+-}	1.2	1.2	1.2	1.2
Total	15.3	14.8	17.0	15.7

$B \to K \ell \ell$

Continuum and $B\overline{B}$ suppression with a neural net, \mathcal{O}' . Included event-shape variables, decay vertex information and flavour-tagging confidence

Sources	$B^+ \to J/\psi K^+$	$B^0 ightarrow J/\psi K^0_S$	$R_{K^+}(J/\psi)$	$R_{K^0}(J/\psi)$	$A_I(J/\psi K)$
Lepton identification	± 0.68	± 0.68	± 0.97	± 0.97	
Kaon identification	± 0.80				± 0.007
K_S^0 identification		± 1.57			± 0.002
Track reconstruction	± 1.05	± 1.40			± 0.002
Efficiency calculation	± 0.14	± 0.18	± 0.20	± 0.25	± 0.001
Number of $B\bar{B}$ pairs	± 1.40	± 1.40			
$f^{+-(00)}$	± 1.20	± 1.20			± 0.012
\mathcal{O}_{\min}	± 0.16	± 0.28	± 0.24	± 0.39	± 0.001
PDF shape parameters	$^{+0.15}_{-0.20}$	$^{+0.05}_{-0.10}$	$+0.22 \\ -0.31$	$^{+0.10}_{-0.20}$	± 0.002
Total	± 2.38	± 2.90	$^{+1.05}_{-1.07}$	$^{+1.08}_{-1.09}$	± 0.014

Muon mode

Mode	$\varepsilon~(\%)$	$N_{ m sig}$	$N_{ m sig}^{ m UL}$	$\mathcal{B}^{(\mathrm{UL})}$ (10 ⁻⁸)
$B^+ \to K^+ \mu^+ e^-$	29.4	$11.6_{-5.5}^{+6.1}$	19.9	8.5
$B^+ \to K^+ \mu^- e^+$	31.2	$1.7\substack{+3.6 \\ -2.2}$	7.5	3.0
$B^0 \to K^0 \mu^\pm e^\mp$	20.9	$-3.3_{-2.8}^{+4.0}$	3.0	3.8

Electron mode

4

6 č

q^2	$B \to \mathrm{mode}$	ε	$N_{ m sig}$	B	A_I	A_I	R_K	R_K	
(GeV^2/c^4)		(%)		(10^{-7})	(individual)	(combined)	(individual)	(combined)	
	$K^+\mu^+\mu^-$	20.4	$28.4_{-5.9}^{+6.6}$	$1.76^{+0.41}_{-0.37}\pm0.04$	$A_I(\mu\mu) =$		$R_{K^{+}} =$		
(0.1,4.0)	$K^0_{\scriptscriptstyle S}\mu^+\mu^-$	14.7	$6.8^{+3.3}_{-2.6}$	$0.62^{+0.30}_{-0.23}\pm0.02$	$-0.11^{+0.20}_{-0.17}\pm0.01$	$0.22 \pm 0.14 \pm 0.01$	$0.98^{+0.29}_{-0.26}\pm0.02$	1 01 ±0.28 ± 0.02	
	$K^+e^+e^-$	29.1	$41.5_{-7.0}^{+7.7}$	$1.80^{+0.33}_{-0.30}\pm0.05$	$A_I(ee) =$	$-0.22_{-0.12} \pm 0.01$	$R_{K_{S}^{0}} =$	$1.01_{-0.25} \pm 0.02$	
	$K^0_{\scriptscriptstyle S} e^+ e^-$	19.3	$5.5^{+3.6}_{-2.7}$	$0.38^{+0.25}_{-0.19}\pm0.01$	$-0.35^{+0.21}_{-0.17}\pm0.01$		$1.62^{+1.31}_{-1.01}\pm0.02$		
	$K^+\mu^+\mu^-$	29.0	$28.4_{-5.7}^{+6.4}$	$1.24^{+0.28}_{-0.25}\pm0.03$	$A_I(\mu\mu) =$		$R_{K^{+}} =$		
(4.00.9.19)	$K^0_{\scriptscriptstyle S}\mu^+\mu^-$	21.0	$4.2_{-3.5}^{+4.2}$	$0.27^{+0.18}_{-0.13}\pm0.01$	$-0.34^{+0.23}_{-0.19}\pm0.01$	$0.00^{\pm0.15} \pm 0.01$	$1.29^{+0.44}_{-0.39}\pm0.02$	$0.85 \pm 0.30 \pm 0.01$	
(4.00,8.12)	$K^+e^+e^-$	35.4	$26.9\substack{+6.9 \\ -6.1}$	$0.96^{+0.24}_{-0.22}\pm0.03$	$A_I(ee) =$	$-0.09^{+}_{-0.12} \pm 0.01$	$R_{K_{S}^{0}} =$	$0.85_{-0.24}^{+} \pm 0.01$	
	$K^0_{\scriptscriptstyle S} e^+ e^-$	23.9	$9.3\substack{+3.7 \\ -3.0}$	$0.52^{+0.21}_{-0.17}\pm0.02$	$0.10^{+0.20}_{-0.16}\pm0.01$		$0.51^{+0.41}_{-0.31}\pm0.01$		
	$K^+\mu^+\mu^-$	23.2	$42.3_{-6.9}^{+7.6}$	$2.30^{+0.41}_{-0.38}\pm0.05$	$A_I(\mu\mu) =$		$R_{K^{+}} =$		
(1000)	$K^0_{\scriptscriptstyle S}\mu^+\mu^-$	16.8	$3.9\substack{+2.7\\-2.0}$	$0.31^{+0.22}_{-0.16}\pm0.01$	$-0.53^{+0.20}_{-0.17}\pm0.02$	$0.21 \pm 0.13 \pm 0.01$	$1.39^{+0.36}_{-0.33}\pm0.02$	$1.03^{+0.28}_{-0.24}\pm0.01$	
(1.0,6.0)	$K^+e^+e^-$	31.7	$41.7_{-7.2}^{+8.0}$	$1.66^{+0.32}_{-0.29}\pm0.04$	$A_I(ee) =$	$-0.31_{-0.11}^{+0.01} \pm 0.01$	$R_{K_{S}^{0}} =$		
	$K^0_{\scriptscriptstyle S} e^+ e^-$	21.1	$8.9^{+4.0}_{-3.2}$	$0.56^{+0.25}_{-0.20}\pm0.02$	$-0.13^{+0.18}_{-0.15}\pm0.01$		$0.55^{+0.46}_{-0.34}\pm0.01$		
	$K^+\mu^+\mu^-$	35.6	$24.3_{-5.5}^{+6.3}$	$0.86^{+0.22}_{-0.20}\pm0.02$	$A_I(\mu\mu) =$		$R_{K^+} =$		
(10.2.12.8)	$K^0_{\scriptscriptstyle S}\mu^+\mu^-$	26.5	$5.7^{+3.4}_{-2.6}$	$0.29^{+0.17}_{-0.13}\pm0.01$	$-0.14^{+0.24}_{-0.19}\pm0.01$	$0.18^{+0.22} \pm 0.01$	$1.96^{+1.03}_{-0.89}\pm0.02$	$1.07 \pm 1.03 \pm 0.02$	
(10.2,12.0)	$K^+e^+e^-$	40.3	$14.0\substack{+6.4 \\ -5.5}$	$0.44^{+0.20}_{-0.17}\pm0.01$	$A_I(ee) =$	$-0.18_{-0.18} \pm 0.01$	$R_{K_{S}^{0}} =$	$1.97_{-0.89} \pm 0.02$	
	$K^0_{\scriptscriptstyle S} e^+ e^-$	26.5	$1.1^{+3.7}_{-3.0}$	$0.06^{+0.19}_{-0.15}\pm0.01$	$-0.55^{+0.73}_{-0.60}\pm0.01$		$5.18^{+17.69}_{-14.32}\pm0.06$		
	$K^+\mu^+\mu^-$	45.2	$47.9^{+8.6}_{-7.8}$	$1.34^{+0.24}_{-0.22}\pm0.03$	$A_I(\mu\mu) =$		$R_{K^+} =$		
> 14.10	$K^0_{\scriptscriptstyle S}\mu^+\mu^-$	25.7	$9.6\substack{+4.2 \\ -3.5}$	$0.49^{+0.22}_{-0.18}\pm0.01$	$-0.08^{+0.17}_{-0.15}\pm0.01$	$0.14 \pm 0.14 \pm 0.01$	$1.13^{+0.31}_{-0.28}\pm0.01$	$1.16\pm0.30\pm0.01$	
> 14.18	$K^+e^+e^-$	46.2	$43.2_{-8.3}^{+9.1}$	$1.18^{+0.25}_{-0.22}\pm0.03$	$A_I(ee) =$	$-0.14_{-0.12}^{+0.12} \pm 0.01$	$R_{K_{S}^{0}} =$	$1.16_{-0.27}^{+0.01} \pm 0.01$	
	$K^0_{\scriptscriptstyle S} e^+ e^-$	24.9	$5.9^{+4.0}_{-3.1}$	$0.32^{+0.21}_{-0.17}\pm0.01$	$-0.24^{+0.23}_{-0.19}\pm0.01$		$1.57^{+1.28}_{-1.00}\pm0.02$		
	$K^+\mu^+\mu^-$	27.8	$137.0^{+14.2}_{-13.5}$	$6.24^{+0.65}_{-0.61}\pm0.16$	$A_I(\mu\mu) =$		$R_{K^{+}} =$		
1 1 2	$K^0_{\scriptscriptstyle S}\mu^+\mu^-$	18.5	$27.3_{-5.9}^{+6.6}$	$1.97^{+0.48}_{-0.42}\pm0.06$	$-0.16^{+0.09}_{-0.08}\pm0.01$	$0.10 \pm 0.07 + 0.01$	$1.08^{+0.16}_{-0.15}\pm0.02$	1 10+0 16 + 0 22	
whole q^2	$K^+e^+e^-$	30.3	$138.0\substack{+15.5 \\ -14.7}$	$5.75^{+0.64}_{-0.61}\pm0.15$	$A_I(ee) =$	$-0.19^{+0.01}_{-0.06} \pm 0.01$	$R_{K_{S}^{0}} =$	$1.10^{+0.15}_{-0.15} \pm 0.02$	
	$K^0_S e^+ e^-$	19.0	$21.8^{+7.0}_{-6.1}$	$1.53^{+0.49}_{-0.43}\pm0.04$	$-0.24^{+0.11}_{-0.10}\pm0.01$		$1.29^{+0.52}_{-0.45}\pm0.01$		

$B \to K\ell\ell$

$B \to K^* \ell \ell$

$q^2 (\text{GeV}^2/c^4)$	Signal shape	Peaking backgrounds	Charmonium backgrounds	e, μ efficiency	Classifier	MC size	Total
All modes							
[0.045, 1.1]	0.017	0.026	0.001	0.027	0.030	0.006	0.051
[1.1, 6]	0.020	0.070	0.013	0.065	0.038	0.008	0.106
[0.1, 8]	0.023	0.054	0.051	0.058	0.024	0.005	0.101
[15, 19]	0.019	0.003	0.003	0.090	0.047	0.012	0.104
[0.045, 19]	0.025	0.031	0.023	0.061	0.026	0.004	0.080
B^0 modes							
[0.045, 1.1]	0.010	0.049	0.001	0.024	0.112	0.007	0.126
[1.1, 6]	0.014	0.070	0.012	0.082	0.062	0.010	0.126
[0.1, 8]	0.013	0.033	0.018	0.058	0.049	0.006	0.086
[15, 19]	0.006	0.007	0.001	0.091	0.032	0.013	0.098
[0.045, 19]	0.012	0.031	0.021	0.073	0.033	0.006	0.090
B^+ modes							
[0.045, 1.1]	0.011	0.006	0.000	0.033	0.060	0.013	0.071
[1.1, 6]	0.017	0.086	0.009	0.045	0.092	0.010	0.135
[0.1, 8]	0.013	0.048	0.107	0.060	0.023	0.010	0.135
[15, 19]	0.007	0.008	0.002	0.089	0.052	0.028	0.108
[0.045, 19]	0.011	0.025	0.023	0.044	0.015	0.005	0.059

5.2
1.8
4.6
1.4
1.25
1.32
2.48
2.03
0.17
1.56
8.33

The Belle (II) electromagnetic calorimeter

Made up of 8736 CsI(Tl) ~ 30cm crystals, equivalent to 16 radiation lengths (X_0) for electrons and photons

Compared to $2.5X_0$ before LHCB's ECAL

Belle II:
$$\frac{E}{E_0} = e^{-X/X_0} \approx e^{-0.3} = 74\%$$

LHCb: $\frac{E}{E_0} = e^{-2.5} = 8\%$

Better timing resolution at Belle (II) also allows for better bremsstrahlung recovery

Particle separation in detectors

Daniel Ferlewicz, School of Physics, The University of Melbourne

Verifying Lepton ID

- Test the BDT using standard candles $J/\Psi \rightarrow \ell^+ \ell^-$ and $K_S^0 \rightarrow \pi^+ \pi^-$
- LFUV tests require high precision (with uncertainty < 1%)

Continuum suppression BDT

Continuum suppression BDT input variables	2 nd harmonic moment	1.00	0.62	-0.59	0.05	0.01	-0.01	0.02	-0.02	-0.01	-0.10-
Fox-Wolfram R1-R4	4 th harmonic moment	0.62	1.00	-0.76	0.03	-0.04	-0.01	0.01	0.00	-0.01	-0.15-
Harmonic Moment Thrust 0-4	Sphericity	0.59	-0.76	1.00	0.01	-0.01	0.00	-0.10	0.01	-0.00	0.08 -
	$\cos heta$ of thrust axis	- 0.05	0.03	0.01	1.00	-0.00	-0.02	0.02	0.00	-0.01	-0.03-
Sphericity	Total photon energy	- 0.01	-0.04	-0.01	-0.00	1.00	-0.01	-0.00	0.01	-0.02	0.02 -
Aplanarity	$\cos heta_t$	0.01	-0.01	0.00	-0.02	-0.01	1.00	-0.01	0.01	-0.00	-0.04-
Thrust axis cos theta	$\cos \theta_{K}$	- 0.02	0.01	-0.10	0.02	-0.00	-0.01	1.00	0.02	0.01	-0.02
Missing mass ² of event	ϕ	0.02	0.00	0.01	0.00	0.01	0.01	0.02	1.00	0.00	-0.02 -
Visible energy of event	M _{bc}	0.01	-0.01	-0.00	-0.01	-0.02	-0.00	0.01	0.00	1.00	-0.00
Total photon onergy of event	<i>q</i> ²	0.10	-0.15	0.08	-0.03	0.02	-0.04	-0.02	-0.02	-0.00	1.00
Iotal photon energy of event		ment	ment	ricity	t axis	nergy	$\cos \theta_l$	$\cos \theta_K$	Φ	$M_{\rm bc}$	q²
		2 nd harmonic mo	4 th harmonic mo	Sphe	$\cos heta$ of thrust	Total photon er	5	0			

Signal event classifier

Signal selection BDT input variables	$\Delta z_{\ell\ell}$	1.00	0.78	0.55	-0.05	-0.02	-0.01	-0.01	-0.02	0.01 -
ΔE	$\Delta d_{\ell\ell}$	0.78	1.00	0.56	-0.07	-0.01	-0.01	-0.01	-0.02	0.02 -
Continuum suppression BDT	distℓℓ	0.55	0.56	1.00	-0.04	-0.01	-0.00	-0.01	-0.00	-0.03 -
Δz_0 of the two electrons	ΔE	- 0.05	-0.07	-0.04	1.00	-0.01	-0.01	0.00	-0.05	0.02 -
Δd_0 of the two electrons	$\cos \theta_l$	- 0.02	-0.01	-0.01	-0.01	1.00	-0.03	0.01	-0.01	-0.05 -
Distance of dilepton vertex	$\cos \theta_K$	0.01	-0.01	-0.00	-0.01	-0.03	1.00	0.01	-0.02	-0.01 -
Significance of distance of dilepton vertex	φ	- 0.01	-0.01	-0.01	0.00	0.01	0.01	1.00	-0.00	-0.01 -
Missing mass ² and visible energy of event	M _{bc}	- 0.02	-0.02	-0.00	-0.05	-0.01	-0.02	-0.00	1.00	-0.03 -
Log of dilepton vertex radius	q^2	- 0.01	0.02	-0.03	0.02	-0.05	-0.01	-0.01	-0.03	1.00
		Δz_{ll}	Δd_{II}	dist _{<i>it</i>}	ΔE	$\cos \theta_l$	$\cos \theta_K$	Φ	$M_{\rm bc}$	q²