

UNDER CONSTRUCTION

Current Status and Physics Potential of the

Hyper-Kamiokande Experiment

UNDER CONSTRUCTION

Lake Louise 2023

UNDER CONSTRUCTION

The Hyper-K Detector

Inner detector (ID):

* 216 kton

Outer detector (OD):

- * 1 m thick round the edge, 2 m at top/bottom
- * veto region (incoming/outgoing particles)
- * low energy background shield
- * High reflectivity (>90%) Tyvek facing OD
- * Black sheet facing ID

Height = 71 m, Diameter = 68 m Volume: 258 kton FV > 180 kton

PMT Photosensors

50 cm PMTs (box and line dynode)

 \sim 1.5 ns timing resolution

Inner detector (ID) 20,000 * 50 cm PMTs \rightarrow 20% coverage

8cm PMTs

Outer detector (OD) ~ few thousand * 8 cm PMTs

Multi-PMTs (mPMTs)

- 19 x 8 cm PMTs inside single pressure vessel
- directional information and improved timing and spatial resolutions

Inner detector (ID)

 \sim few thousand mPMTs

Hyper-Kamiokande Physics

- * Neutrino Oscillations
 - beam, atmospheric, solar neutrinos
- * Proton decay and BSM searches
- * Astrophysics
 - solar neutrinos, supernova neutrinos
 - dark matter, gravitational-wave sources
 - gamma-ray sources
- * Nuclear physics
 - neutrino interactions

Proton Decay

Proton decay

HK can improve the SK limit on this process from 10^{34} to 10^{35} years

8

Neutrino Oscillations

Neutrino Oscillations

- \rightarrow neutrino osc. governed by PMNS matrix

2) θ_{23} octant: $\theta_{23} > \pi/4$ or $\theta_{23} < \pi/4$

Matter effects! (electrons) Difference in v_e and v_e travelling through the earth (similar effect as δ_{cp}) \rightarrow allows for mass hierarchy determination

Hyper-Kamiokande

Solar Neutrinos

Solar Neutrinos **Hyper-Kamiokande** →Night Dav ------~ 1.5 σ tension in Δm_{21}^2 between solar & kamLAND (reactor) x10⁵ $-\sin^2(\Theta_{12})=0.312^{+0.033}_{-0.025}$ $\Delta m_{21}^2 = (7.54^{+0.19}_{-0.18}) 10^{-5} eV^2 sin^2(\Theta_{13}) = 0.0242 \pm 0.0026$ $\sin^2(\Theta_{12})=0.311\pm0.014$ $\Delta m_{21}^2=(4.85^{+1.4}_{-0.59})\ 10^{-5} \text{eV}^2$ 18 $\sin^{2}(\Theta_{12})=0.308\pm0.013$ $\Delta m_{21}^{2}=(7.50\pm0.18)^{-0.18}$ $10^{-5} eV^{2}$ 17 Contour lines of constant 16 15 day-night asym. Solar 14 [eV²] 13 12 KamLAND 11 Va: Electron neutrino Δm^{2}_{21} 10 Vutr: Muon/Tau neutrino Combined 9 v_e flux differs between night and day 8 7 \rightarrow matter effects 6 5 4

 \rightarrow day-night asymmetry

Day-night asymmetry higher than expected from reactor constraint \rightarrow contributes to the Δm_{21}^2 tension

Hyper-K can reject no D/S assym >5 σ confirmation with 10 years of Hyper-k And can investigate this tension with increased stats

0.4

-50%

-10%

0.5

3

2

0.1

0.2

0.3

 $sin^2(\theta_{12})$

Solar Neutrinos

Low energy solar neutrino survival probability

Hyper-K can constrain the '**upturn**' in the vacuum-MSW transition region

Sensitivity depends on analysis energy threshold

Electron kinetic energy equivalent threshold 3.5-4.5 MeV

 \rightarrow Sensitivity of 3-5 σ for upturn discovery after Hyper-k 10 years

(normalised to total event rate, for unknown distance)

\rightarrow Hyper-K can build discriminators to constrain SN models

Supernova Model Discrimination with Hyper-Kamiokande K. Abe et al 2021 ApJ916 15 https://arxiv.org/abs/2101.05269

Long-baseline neutrino oscillations (beam)

Hyper-Kamiokande long-baseline

* Upgrade T2K beam to 1.3MW

* Upgraded ND280

* New intermediate water Cherenkov detector (IWCD)

WCD Near Detectors
Hyper-K
HK at same distance and off-axis angle as SK
17

Intermediate water Cherenkov detector (IWCD) Constrains flux and neutrino interactions with same target as far detector

Distance $\sim 1 \text{ km}$, Diameter $\sim 8 \text{ m}$, height $\sim 6 \text{ m}$ Size optimised to contain 1 GeV muons, while minimizing beam pile up events

> Vertical pit (50 m), detector moves up and down \rightarrow samples flux at different angles

> > \rightarrow sample flux at different energy profiles

Multi-PMTs: better timing and spatial resolution than 1 large PMT

 \rightarrow good reconstruction despite small detector

750 m

Sensitivity to exclude $\delta_{CP} = 0$ given different true values of δ_{CP}

Percentage of true δ_{CP} values for which $sin(\delta_{CP})=0$ can be excluded, as a function of HK years.

The systematic uncertainty on the v_e / \overline{v}_e cross section will have the largest impact on δ_{CP}

 \rightarrow Near/intermediate detectors will play a vital role in constraining these errors

5 achieved for ~60% fraction of $\delta_{\mbox{\tiny CP}}$ values with 10 years data taking

* Diagram: Kajita T. (10.2183/pjab.86.303)

Construction and Outlook

Excavation reached the centre of the cavern dome in June 2022

UNDER

Summary

The Hyper-Kamiokande is a next-generation neutrino experiment

- * Builds on the expertise and knowledge gained from the successful Super-K programme
 - Fiducial volume 8 times larger than SK
 - Improved photosensors
 - beam upgrade to 1.3 MW
 - New intermediate water Cherenkov detector and upgraded near detectors

Wide range of physics

- * CP violation in the lepton sector
- * Nucleon decays
- * Astrophysics
- * Potential to discover new physics

New collaborators welcome!

Construction underway Data taking in 2027

BACKUP

Solar Neutrinos

Hyper-K can constrain the

Solar Neutrinos

Hyper-K can constrain the **'upturn'** in the vacuum-MSW transition region in the low energy solar neutrino **survival probability**

Expect 3-5 σ for upturn discovery after 10 years

M31 (Andromeda 6898 Galaxy) ~ 10 to 16 events expected at Hyper-K.

Large Magellanic Cloud (where SN1987A was located) ~ 2,200 to 3,600 events expected

Betelgeuse (200pc) ~ 117.5 million – 180 million events

* Blackhole formation can be observed as a sharp drop in neutrino flux

* Hyper-K can confirm/refute models relating to the dynamics of the explosion (Standing Accretion Shock Instability)

* Supernova flux is sensitive to mass ordering without too much model dependence \rightarrow neutronization burst

Inverse beta decay dominates

$$\overline{\nu}_e + p \rightarrow e^+ + n$$

* Different models predict different electron antineutrino rates
* Stat error is much smaller than the difference between models

Predicted inverse beta decay rates

Expected number of events as a function of supernova distance

The event rate is normalized to produce the same total number of events for each model, reflecting the assumption that the distance of the supernova is unknown.

> Supernova Model Discrimination with Hyper-Kamiokande K. Abe et al 2021 ApJ916 15 https://arxiv.org/abs/2101.05269

Model discrimination example

→ Hyper-K can constrain different models

Supernova Relic Neutrinos

Predicted flux for different models

- * Small flux, large backgrounds
 - \rightarrow No evidence of supernova relic neutrinos at SK yet

By HK detector:

- SRN can be observed in 10y with \sim 70±17 events and > 4 σ non-zero significance (photo-coverage 40%).
- ~40 \pm 13 events and 3 σ with a 20% photo-coverage

Dashed line for case where 30% form black hole and emit higher energy neutrinos

Proton decay and neutrinos

Atmospheric nu still biggest background for kaon mode Originally proposed by Sakharov to provide baryon number violation to explain the matter-antimatter asymmetry of the universe.

Many GUT predict proton decay

KamiokaNDE (Kamioka Nucleon Decay Experiment) I&II

- → Did not observe proton decay
- \rightarrow ruled out many GUTs at the time
- → observed Supernova 1987a
- \rightarrow saw hints of neutrino oscillation
 - \rightarrow solar neutrinos
 - \rightarrow atmospheric neutrinos

Super-K limit on proton decay $> 10^{34}$ years

Proton decay

The Kamiokande Series

Hyper-K: Height h = 71m, diameter d = 68mHyper-Kamiokande Volume V = 258 kton, Fiducial Volume FV >= 187 kton Super-Super-K: h = 41.4m, d = 39.1m Kamiokande V = 50kton, FV: >=22.5 kton Kamiokande 258 kton **KamiokaNDE** h = 16 md = 15.6 m50 kton V = 3 kton FV = 0.68 kton3 kton

The Kamiokande Series

- * Proton decay
- * Solar, supernova and atmospheric neutrinos
- * Accelerator beam neutrinos

Hyper-Kamiokande

PMTs

M. Smy Nufact 2022

	Super-K	Hyper-K
	11,129 20" PMTs	20,000 20° PMTs (JPN) (+addition PDs) (Overseas))
photo-coverage	40%	20%
single photon efficiency/PMT	~12%	~24%
dark noise	~5kHz (typical)	4kHz (average)
time resolution (one p.e)	~3ns	~1.5ns

	mPMT: 19 x 3" PMTs	20" 'B&L' PMT
photo-cathode area	870 cm^2	2000 cm^2
effective light yield	~ 1 hit/MeV/5,000 mPMTs	~6 hits/MeV/20,000 PMTs
dark noise	19 x 200-300 Hz	~4kHz (typical)
transit time spread	1.3ns	2.7ns
comments	granularitydirectionalitybetter time resolution	 performance confirmed high photon detection efficiency

Adding Gadolinium to IWCD

Adding Gadolinium to the water allows for neutron capture

 \rightarrow Better v / \overline{v} separation

Potential to load IWCD with Gadolinium: 0.1% Gd \rightarrow Neutron tagging

Neutrino beam

- * **30GeV protons** \rightarrow **graphite** target \rightarrow charged **hadrons**
- * charge selection and focusing of hadrons with 3 electromagnetic horns
- * hadrons decay to $v \text{ or } \overline{v}$ (depending on charge of hadron)

Dominant systematic error due to hadron interaction modelling

- → Constrained using NA61/SHINE replica target measurements
- \rightarrow In future flux uncertainty will be reduced by the EMPHATIC experiment

T2K/HK Beam upgrade

* Beam currently capable of 450-500kW stable running

- * Beam line upgrade in 2021
 - Nd280 upgrade will

happen at the same time

* target power: 1.3MW

J-PARC neutrino beam flux and its error

run1-4 at SK

 $-\nu_e$ $-\overline{\nu}_e$

E. (GeV)

@T2K far detector

Flux (/cm²/50MeV/10²¹p.o.t)

v flux is predicted based on hadron production and in-situ proton beam measurements

- Recently flux error was improved with NA61/ SHINE replica 2010 data : ~5% error
- Further reduction of flux systematic errors, several activities are underway

Hadron production is still largest error source

Neutrino interactions

CCRES

CCQE

Interactions occur with nucleons bound inside a nucleus

→ Nuclear effects!!

N

CCDIS

We only measure particles that exit the nucleus \rightarrow lose information about the initial interaction

N'

 \rightarrow can create a bias in energy reconstruction

Neutrino interactions

Extra nuclear effects

Interactions occur with nucleons bound inside a nucleus

→ Nuclear effects!!

We only measure particles that exit the nucleus \rightarrow lose information about the initial interaction

 \rightarrow can create a bias in energy reconstruction

ND280 upgrade (2021)

Pi0 detector is being replaced by * SuperFGD

- higher granularity, 3D readout
- * Horizontal TPCs (HTPCs)
- * Time of Flight (ToF) planes
- \rightarrow increases active target **mass** for oscillation analysis
- → improved angular acceptance
- \rightarrow able to reconstruct low energy short tracks
 - \rightarrow improved hadronic information
 - \rightarrow better $y \rightarrow e^+ e^-$ identification

Reduce systematic uncertainty to 4%

 \rightarrow 3 σ exclusion of CP conservation for 36% of the δ_{cp} phase space (if mass hierarchy is known)

Hyper-Kamiokande long-baseline

Predicted HK far detector event yields for 10 years of operation

osc v_e CC

osc \overline{v}_{e} CC

NC

v. CC

 \overline{v}_{a} CC

 $\delta_{CP} = +\pi/2$

 $\bullet \delta_{CP} = -\pi/2$

 $\delta_{CP} = +\pi$

0.4

0.4

0.6

0.8

v Reconstructed Energy (GeV)

0.6

0.8

v Reconstructed Energy (GeV)

 $v_{\mu}/\overline{v}_{\mu}$ CC

1.2

 $v: \bar{v} = 1:3$