

University of Sheffield

MEASUREMENTS OF HIGGS BOSON PROPERTIES WITH THE ATLAS DETECTOR AT CERN

THE LAKE LOUISE WINTER INSTITUTE 2023 CONFERENCE | CHATEAU LAKE LOUISE - CANADA KAMAL SAOUCHA | ON BEHALF OF THE ATLAS COLLABORATION

Why measure the Higgs boson properties?

Why measure the Higgs boson properties?

The right question to ask is ...

Did we find "THE" Higgs boson? i.e. the Standard Model (SM) Higgs Boson

Why measure the Higgs boson-properties?

The right question to ask is ...

Did we find "THE" Higgs boson? i.e. the Standard Model (SM) Higgs Boson

The Higgs boson mass

The Higgs mass is a *free* parameter of the SM

... has to be measured empirically

Given the Higgs boson mass, the SM can make precise predictions of the Higgs properties

=> Precise measurement of m_H important for testing the SM predictions!

Fully reconstructed Higgs boson decay channels using the ATLAS detector

In ATLAS, *photons, electrons* and *muons* reconstructed and identified with high efficiency, as well as measured with high precision

 $H \rightarrow \gamma \gamma$: mass estimator = $m_{\gamma \gamma}$ $H \rightarrow ZZ \rightarrow 4l^{\pm}$: mass estimator = m_{4l}

m = invariant mass of the decay products

ℓ = electron or muon

Higgs mass measurement in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 4l^{\pm}$

8

The latest ATLAS Higgs mass measurements

 $H \rightarrow \gamma \gamma$

Latest measurement using fraction of Run 2 data (36 fb⁻¹)

 $m_{\gamma\gamma} = 124.93 \pm 0.21 (stat) \pm 0.34 (syst) GeV$ (systematics dominated, lead by calibration uncertainty)

 $m_{\gamma\gamma} = 124.93 \pm 0.40 \ GeV$

Combined with Run 1 measurement $m_{\gamma\gamma} = 125.32 \pm 0.35 \text{ GeV}$

(Full Run 2 measurement coming soon!)

 $H \rightarrow ZZ \rightarrow 4l^{\pm}$

Latest measurement using full Run 2 data (139 fb⁻¹)

 $m_{4l} = 124.99 \pm 0.18 (stat) \pm 0.04 (syst) GeV$ (dominated by statistical uncertainty)

 $m_{4l} = 124.99 \pm 0.19 \ GeV$

Combined with Run 1 measurement $m_{4l} = 124.94 \pm 0.18 \ GeV$

(Best measurement so far!)

The Higgs boson natural width

The Higgs boson natural width $\Gamma_{ m H}$

The width of the Higgs boson depends on its couplings to SM particles ...

Important parameter for sensitivity for Beyond SM contributions!

Predicted to be 4.1 MeV for $m_H = 125 \text{ GeV}$

The Higgs boson natural width $\Gamma_{ m H}$

Typical experimental resolution of the order O(GeV) ...

⇒ Direct measurement from invariant mass peak not possible!

Indirect measurement of $\Gamma_{\rm H}$ using the off-shell Higgs production

Assuming a negligible on- and off-shell coupling difference, evolving SM like ... i.e. assuming no contribution from new physics!

$$\frac{\mu_{\text{off-shell}}}{\mu_{\text{on-shell}}} = \frac{\Gamma_H}{\Gamma_H^{SM}}$$

 μ the signal strength

Higgs width measurement in 41 and 212ν finale states

Observable: neural network discriminant

Observable: transverse ZZ mass

Higgs width measurement in 41 and 2l2v finale states

Indirect measurement of $\Gamma_{\rm H}$ from off-shell Higgs

Combined with the previous on-shell result (Eur.Phys.J.C 80(2020)10, 957)

 $\Gamma_{\rm H} = 4.6^{+2.6}_{-2.5} MeV$

Upper limit on Γ_H of 9.7 MeV at 95% CL

The Higgs boson spin and CP properties

The Higgs boson spin-parity

The SM Higgs boson has spin 0 and positive parity (CP even)

Using measurements of $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$ and $H \rightarrow WW$ in Run 1

=> Spin 1 and spin 2
hypotheses have been excluded
with a confidence level larger
than 99.9%

The Higgs boson CP properties

Higgs purely CP-even? possible CP-violation in the Higgs sector?

The Higgs boson CP properties

coupling to EW vector bosons

CP-odd components in HVV couplings forbidden in SM at tree level ...

Typically described in higher order terms in an effective field expansion

The Higgs boson CP properties

CP-odd components of Higgs-fermion couplings at tree level allowed!

Important to constrain CP-odd Higgs-fermion couplings

CP properties of Higgs-top coupling using t(t)H

Effective Yukawa interaction between Higgs boson and top quark

$$\mathcal{L}_{t\bar{t}H} = -\kappa'_{t}y_{t}\phi\bar{\psi}_{t}(\cos\alpha + i\gamma_{5}\sin\alpha)\psi_{t}$$

$$y_{t} = SM \text{ top Yukawa coupling}$$

$$\kappa_{t}' = \text{ coupling modifier}$$

$$\alpha = CP\text{-mixing angle}$$

$$CP\text{-even} \qquad CP\text{-odd}$$

$$(SM\text{-like}) \qquad (BSM\text{-like})$$

CP properties of Higgs-top coupling using t(t)H

CP properties of Higgs-top coupling using t(t)H

25

CP properties of Higgs-top coupling using ttH

CP properties of Higgs- τ coupling using in $H \rightarrow \tau \tau$

Effective Yukawa interaction between Higgs boson and τ -lepton

$$\mathcal{L}_{H\tau\tau} = -\frac{m_{\tau}}{\nu} \kappa_{\tau} \left(\cos \phi_{\tau} \bar{\tau} \tau + \sin \phi_{\tau} \bar{\tau} i \gamma_{5} \tau \right) H$$

$$m_{\tau} = \tau \text{-lepton mass}$$

$$\kappa_{\tau} = \text{reduced Yukawa coupling}$$

$$v = \text{vacuum expectation value}$$
of the Higgs field
$$\phi_{\tau} = CP \text{-mixing angle}$$

$$COS \phi_{\tau} \bar{\tau} \tau + \sin \phi_{\tau} \bar{\tau} i \gamma_{5} \tau \right) H$$

v =

CP properties of Higgs- τ coupling using in $H \rightarrow \tau \tau$

The τ -lepton is reconstructed from its decay products ...

CP properties of Higgs- τ coupling using in H $\rightarrow \tau \tau$

After ten years since the discovery ...

Great progress in measuring the Higgs boson properties

The Higgs boson mass known to 0.11% with the full Run 2 H $\rightarrow \gamma \gamma$ mass measurement to come, and more combined results

The Higgs boson natural width measured at MeV level + evidence of off-shell Higgs boson production (more measurements and combined results to come)

CP structure of different Higgs couplings probed: pure CP-odd coupling excluded at > 3σ in several measurements (with more results to come)

Stay tuned for more Run 2, combined and Run 3 results!

Extra slides

CP properties of HVV coupling with VBF Higgs to diphoton

CP-odd component can be described by adding dimension-6 operators to the SM Lagrangian (EFT approach)

$$|\mathcal{M}|^{2} = |\mathcal{M}_{SM}|^{2} + 2 \cdot c_{i} \cdot \operatorname{Re}(\mathcal{M}_{SM}^{*}\mathcal{M}_{CP\text{-odd}}) + c_{i}^{2} \cdot |\mathcal{M}_{CP\text{-odd}}|^{2}.$$

The optimal observable:

$$OO = 2 \cdot \operatorname{Re}(\mathscr{M}_{SM}^* \cdot \mathscr{M}_{CP-odd}) / |\mathscr{M}_{SM}|^2$$

CP properties of HVV coupling with VBF Higgs to diphoton

	68% (exp.)	95% (exp.)	68% (obs.)	95% (obs.)
\tilde{d} (inter. only)	[-0.027, 0.027]	[-0.055, 0.055]	[-0.011, 0.036]	[-0.032, 0.059]
\tilde{d} (inter.+quad.)	[-0.028, 0.028]	[-0.061, 0.060]	[-0.010, 0.040]	[-0.034, 0.071]
\tilde{d} from $H \rightarrow \tau \tau$	[-0.038, 0.036]	—	[-0.090, 0.035]	-
Combined \tilde{d}	[-0.022, 0.021]	[-0.046, 0.045]	[-0.012, 0.030]	[-0.034, 0.057]
$c_{H\tilde{W}}$ (inter. only)	[-0.48, 0.48]	[-0.94, 0.94]	[-0.16, 0.64]	[-0.53, 1.02]
$c_{H\tilde{W}}$ (inter.+quad.)	[-0.48, 0.48]	[-0.95, 0.95]	[-0.15, 0.67]	[-0.55, 1.07]

Most stringent constraints on CP-properties of HVV coupling to date

arXiv:2208.02338

