

Flavor Tagging with Graph Neural Network with the ATLAS Detector

Alexander Khanov Oklahoma State University On behalf of the ATLAS collaboration

Lake Louise Winter Institute, February 19–25, 2023

Outline

- Jet flavor tagging in ATLAS
- GNN tagging algorithm
 - description
 - performance
- Jet flavor tagging at the HL-LHC
- Conclusions

Jet flavor tagging 101

- Jet flavor tagging: identification of jets originating from b- and c-quarks
 - a b-jet is a jet that contains a B-hadron (decided by ghost association)
 - a c-jet is a jet that does not contain B-hadrons but contains a D-hadron
 - all other jets (except τ -jets) are called light
- Flavor tagging algorithm: a method to detect b- and c-jets
 - relies on significant lifetime of B/D hadrons
 - two main approaches based on either tracks with large impact parameter (IP) or explicit reconstruction of secondary vertices (SV)
- Performance of tagging algorithms is characterized by b-tagging efficiency ϵ_{b} (probability to correctly identify a b-jet) vs mistag rate ϵ_{l} (probability to misidentify a light jet as a b-jet)
 - ϵ_{l} as a function of ϵ_{b} is known as a ROC curve
 - similarly, the c-tagging performance is described by a ϵ_c vs ϵ_b ROC curve
- To be useful for physics analyses, the performance of the tagging algorithm needs to be calibrated against real data
 - since the calibration procedure is cumbersome, only a few points on the ROC curve (working points, WP) are used
 - physics analyses pick a WP that best suits their needs

Evolution of tagging algorithms in ATLAS

- Low level algorithms: IP3D, SV1, JetFitter
 - likelihood based algorithms looking at track IPs or SVs
 - limited consideration of track parameter correlations
- Combinations of low-level algorithms: IP3D+SV1
- Multivariate combination of low-level algorithms based on boosted decision trees: MV2
- Neural Network combination: DL1 and its flavors
 - DL1: original (IP3D+SV1+JetFitter)
 - DL1r: IP3D replaced with recurrent NN (RNNIP)
 - DL1d: RNNIP replaced with deep sets NN (DIPS)
- Graph Neural Network: GN1

GN1 overview

- GN1: graph NN with direct track input
- Why the new algorithm?
 - improved performance (of course)
 - flexibility: no need to re-optimize low-level taggers for a new task (Xbb, c-tagging,...)
 - better insight into tagging process (auxiliary vertex and track origin predictions)

GN1 model

- Inputs: two jet variables (p_T , η) and $n_{tracks} \times 21$ tracking variables ($n_{tracks} \leq 40$)
 - five track parameters + their uncertainties (q/p, direction relative to the jet axis, track IP in transverse and longitudinal plane)
 - hit patterns
 - (optional) lepton track ID
- Labels: jet flavor (b, c, light)
- Auxiliary training objectives
 - track origin (pileup, fake, primary, b, $b \rightarrow c$, c, other secondary)
 - track-pair vertex compatibility (binary)

rescaled to mean=1, var=1

Architecture

- Inputs are fed into a per-track initialization network (3 hidden + 1 output layer ×64 neurons)
- Outputs (latent track representations) are used to populate a fully connected GNN (a node = a track)
- Resulting node representations are fed to classification networks

Network	Hidden layers	Output
Node	128,64,32	7
Edge	128,64,32	1
Graph	128,64,32,16	3

Training

- MC samples: tt→l+jet/dileptons, Z'→qq (flat jet p_T up to 5 TeV, equal bb/cc/light)
 - 30M jets (60% tt + 40% Z')
- Goal: minimize total loss $L_{total} = L_{jet} + \alpha L_{vertex} + \beta L_{track}$
 - L_{jet}: categorical cross entropy loss over jet flavors
 - L_{vertex}: binary cross entropy loss averaged over track pairs
 - L_{track}: categorical cross entropy loss over track origins
- Optimal choice: $\alpha = 1.5$, $\beta = 0.5$
 - verified that the algorithm works with L_{iet} minimization alone

Performance

Performance (2)

- Improvement in b-tagging efficiency at fixed mistag rate (0.01) is particularly significant at large jet $p_{\rm T}$
- Vertexing performance: inclusive b-vertex reco efficiency ~80%
- Track classification performance: weighted AUC ~0.95

HL-LHC upgrade

- High-Luminosity LHC is expected to operate from 2029
 - instantaneous luminosity $2 \times 10^{34} \rightarrow 7.5 \times 10^{34}$ /cm²s
 - average number of interactions per bunch crossing $55 \rightarrow 200$
- ATLAS inner tracker will be replaced with all-silicon ITk
 - jet flavor taggers are going to work under tough pileup conditions, especially given extended pseudorapidity range ($|\eta| < 2.5 \rightarrow |\eta| < 4.0$)

GN1 performance with HL-LHC

- Presenting here very recent (three months old) first results on the GN1 jet tagger performance with HL-LHC
 - so far, all published physics projections of ATLAS physics reach at the HL-LHC have been done with MV2
- Don't take them as the ultimate flavor tagging performance, but rather as a demonstration of the flexibility of the new GN1 tagger, and its adaption to HL-LHC
 - note that training samples for GN1 only have 4M jets (after downsampling)

GN1 performance for HL-LHC (2)

- Iso-efficiency curves: a nice way to present tagger performance in terms of three efficiencies (b,c,light)
 - clear advantage of GN1 over other algorithms, especially for c-tagging

Summary

- GN1 is a novel jet tagger based on graph NN architecture and trained with auxiliary training targets
 - shown to significantly improve flavor tagging performance compared to the current ATLAS base line tagger (DL1r)
- Flexible, easier to optimize, simpler to maintain
- Demonstrates improved track classification performance and high b-tagging vertex finding efficiency
- The GN1 performance has been evaluated in the context of the HL-LHC environment
 - very promising performance can already be achieved
 - looking for further improvements due to in-depth tuning of NN configurations, better modeling (simulation of interaction of B/D hadrons), improved pileup jet rejection

Backup