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Jet flavor tagging 101
• Jet flavor tagging: identification of jets originating from b- and c-quarks

– a b-jet is a jet that contains a B-hadron (decided by ghost association)
– a c-jet is a jet that does not contain B-hadrons but contains a D-hadron
– all other jets (except τ-jets) are called light

• Flavor tagging algorithm: a method to detect b- and c-jets
– relies on significant lifetime of B/D hadrons
– two main approaches based on either tracks with large impact parameter (IP) 

or explicit reconstruction of secondary vertices (SV)
• Performance of tagging algorithms is characterized by b-tagging efficiency 

εb (probability to correctly identify a b-jet) vs mistag rate εl (probability to 
misidentify a light jet as a b-jet)
– εl as a function of εb is known as a ROC curve
– similarly, the c-tagging performance is described by a εc vs εb ROC curve

• To be useful for physics analyses, the performance of the tagging 
algorithm needs to be calibrated against real data
– since the calibration procedure is cumbersome, only a few points on the ROC 

curve (working points, WP) are used
– physics analyses pick a WP that best suits their needs
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Evolution of tagging algorithms in 
ATLAS

• Low level algorithms: IP3D, SV1, JetFitter
– likelihood based algorithms looking at track IPs or SVs
– limited consideration of track parameter correlations

• Combinations of low-level algorithms: IP3D+SV1
• Multivariate combination of low-level algorithms based 

on boosted decision trees: MV2
• Neural Network combination: DL1 and its flavors

– DL1: original (IP3D+SV1+JetFitter)
– DL1r: IP3D replaced with recurrent NN (RNNIP)
– DL1d: RNNIP replaced with deep sets NN (DIPS)

• Graph Neural Network: GN1 
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GN1 overview
• GN1: graph NN with 

direct track input
• Why the new algorithm?

– improved performance 
(of course)

– flexibility: no need to 
re-optimize low-level 
taggers for a new task 
(Xbb, c-tagging,…)

– better insight into 
tagging process 
(auxiliary vertex and 
track origin 
predictions)
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GN1 model
• Inputs: two jet variables (pT, η) and ntracks×21 tracking variables (ntracks≤40)

– five track parameters + their uncertainties (q/p, direction relative to the jet 
axis, track IP in transverse and longitudinal plane)

– hit patterns
– (optional) lepton track ID

• Labels: jet flavor (b, c, light)
• Auxiliary training objectives

– track origin (pileup, fake, primary, b, bc, c, other secondary)
– track-pair vertex compatibility (binary)
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Architecture
• Inputs are fed into a per-track 

initialization network (3 hidden + 1 
output layer ×64 neurons)

• Outputs (latent track representations) 
are used to populate a fully connected 
GNN (a node = a track)

• Resulting node representations         
are fed to classification networks
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Network Hidden layers Output

Node 128,64,32 7

Edge 128,64,32 1

Graph 128,64,32,16 3



Training
• MC samples: tt̅l+jet/dileptons, Z’qq̅ (flat jet pT up to 

5 TeV, equal bb̅/cc̅/light)
– 30M jets (60% tt̅ + 40% Z’)

• Goal: minimize total loss Ltotal=Ljet+αLvertex+βLtrack
– Ljet: categorical cross entropy loss over jet flavors
– Lvertex: binary cross entropy loss averaged over track pairs
– Ltrack: categorical cross entropy loss over track origins

• Optimal choice: α=1.5, β=0.5
– verified that the algorithm works with Ljet minimization alone
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Performance
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significant 
improvement in both 
light and c-jet rejection 
(×~2 at 70% WP)

b-tag score: 𝐷𝐷𝑏𝑏 = log 𝑝𝑝𝑏𝑏
1−𝑓𝑓𝑐𝑐 𝑝𝑝𝑙𝑙+𝑓𝑓𝑐𝑐𝑝𝑝𝑐𝑐

fraction of c-jets (0.05)

60% 
WP

85% 
WP

70% 
WP

with lepton id

ATL-PHYS-PUB-2022-027

https://cds.cern.ch/record/2811135


Performance (2)
• Improvement in b-tagging efficiency at fixed mistag rate (0.01) is 

particularly significant at large jet pT
• Vertexing performance: inclusive b-vertex reco efficiency ~80%
• Track classification performance: weighted AUC ~0.95
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HL-LHC upgrade
• High-Luminosity LHC is expected to operate from 2029

– instantaneous luminosity 2×10347.5×1034/cm2s
– average number of interactions per bunch crossing 55200

• ATLAS inner tracker will be replaced with all-silicon ITk
– jet flavor taggers are going to work under tough pileup conditions, 

especially given extended pseudorapidity range (|η|<2.5 -> |η|<4.0)
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GN1 performance with HL-LHC
• Presenting here very recent (three months old) first results on the GN1 

jet tagger performance with HL-LHC
– so far, all published physics projections of ATLAS physics reach at the HL-LHC 

have been done with MV2
• Don’t take them as the ultimate flavor tagging performance, but rather 

as a demonstration of the flexibility of the new GN1 tagger, and its 
adaption to HL-LHC
– note that training samples for GN1 only have 4M jets (after downsampling)
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GN1 performance for HL-LHC (2)

• Iso-efficiency curves: a nice way to present tagger performance in 
terms of three efficiencies (b,c,light)
– clear advantage of GN1 over other algorithms, especially for c-tagging
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Summary
• GN1 is a novel jet tagger based on graph NN architecture 

and trained with auxiliary training targets
– shown to significantly improve flavor tagging performance 

compared to the current ATLAS base line tagger (DL1r)
• Flexible, easier to optimize, simpler to maintain
• Demonstrates improved track classification performance 

and high b-tagging vertex finding efficiency
• The GN1 performance has been evaluated in the context of 

the HL-LHC environment
– very promising performance can already be achieved
– looking for further improvements due to in-depth tuning of NN 

configurations, better modeling (simulation of interaction of B/D 
hadrons), improved pileup jet rejection
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