

Recent results on associated top-quark production and searches for new top-quark phenomena with the ATLAS detector

Knut Zoch, Université de Genève (CH) on behalf of the ATLAS Collaboration

Lake Louise Winter Institute, Alberta, Canada

February 19-25, 2023

Top quarks in Run 2

- The top quark = the **heaviest** known fundamental particle special role in BSM?
- ATLAS Run 2 dataset (139 fb⁻¹) enables exciting top-quark measurements:
 - Direct probes of top-quark couplings: *tqZ*, *tqH*, *tqγ*, ...
 - Heavy final states (background to many direct searches): ttW, ttH, tttf, ...
 - Top-quark properties, for example **charge asymmetry** in pair production
 - Compared to $t\bar{t}$, enhanced in associated production modes: $t\bar{t}\gamma$, $t\bar{t}W$
 - Searches for BSM couplings of the top quark **flavorchanging neutral currents:** *tqH*, *tqγ*, *tqg*, *tqZ*

Top quarks in Run 2

- The top quark = the heaviest known fundamental particle special role in BSM?
- ATLAS Run 2 dataset (139 fb⁻¹) enables exciting top-quark measurements:
 - Direct probes of top-quark couplings: tqZ, $tqH(tq\gamma)$
 - Heavy final states (background to many direct) searches): $t\bar{t}W$, $t\bar{t}H$, $t\bar{t}t\bar{t}$, ...
 - Top-quark properties, for example **charge asymmetry** in pair production
 - Compared to $t\bar{t}$, enhanced in associated production modes: $t\bar{t}\gamma$, $t\bar{t}W$
 - Searches for BSM couplings of the top quark flavorchanging neutral currents: tqH, $tq\gamma$, qg, tqZ

3

FACULTY OF SCIENCE

20 Feb 2023

ATL-PHYS-PUB-2022-051

Observation of $tq\gamma$

- Associated top-photon production through various diagrams:
 - Considered signal: $tq\gamma$ with semileptonic top-quark decays
 - Contamination from radiative top-quark decays $t \rightarrow l\nu b\gamma$
- Two measurements in fiducial parton/particle phase spaces:
 - $tq\gamma$ at parton level \rightarrow direct comparison with fixed-order calculations possible
 - Combined $tq\gamma$ and $t(\rightarrow l\nu b\gamma)q$ measurement at particle level
- Selection: 1 e/μ , 1 γ , MET, 1 tight b-tag, 0/1 forward jets (2.5 < $|\eta|$ < 4.5)
- Additional **control regions** for most dominant background processes:
 - $t\bar{t}\gamma$ (1 additional loose b-tag, inclusive in forward jets)
 - $W\gamma$ (1 loose b-tag, but no tight, inclusive in forward jets)

Submitted to Phys. Rev. Lett. (Feb 2023) [arXiv:2302.01283]

Observation of $tq\gamma$

• Estimates for fake-photon backgrounds:

- $e \rightarrow \gamma$ from dedicated $Z \rightarrow ee$ and $Z \rightarrow e\gamma$ control regions (for different photon reconstruction types and in bins of photon η)
- $h \rightarrow \gamma$ through ABCD method (inverted photon isolation and identification criteria) in bins of η , $p_{\rm T}$ and reconstruction type
- NNs in the 0fj and ≥1fj regions to maximize S/B separation
- Simultaneous fit of the NN discriminant outputs in the 0fj and \geq 1fj regions and the $t\bar{t}\gamma$ CR + event yields in the $W\gamma$ CR
- **Observation with** $\sigma_{tqy} \times \mathcal{B}(t \to l\nu b) = 688 \pm 23(\text{stat.}) \stackrel{+75}{_{-71}}(\text{syst.})$ fb
- Parton (particle) level results compatible with SM within 2.1σ (2.0σ)
 - CMS result using 36 fb⁻¹ with ±28% (4.4 σ)

Phys. Rev. Lett. 121 (2018) 221802

Dominant systematic: $t\bar{t}\gamma$ modelling

Charge asymmetry

• **Difference in rapidity** of tops and antitops in pair production $(t\bar{t})$:

$$A_{\rm C}^{t\bar{t}} = \frac{N(\Delta|y_{t\bar{t}}| > 0) - N(\Delta|y_{t\bar{t}}| < 0)}{N(\Delta|y_{t\bar{t}}| > 0) + N(\Delta|y_{t\bar{t}}| < 0)}$$

- Symmetric at LO in QCD, but interference effects at NLO predict $A_c > 0$
- Effect is "diluted" by dominant symmetric gg-initiated production mode at the LHC
- Most recent ATLAS result: $A_c^{t\bar{t}} = 0.0068 \pm 0.0015$ (incompatible with zero with 4.7 σ !)
 - Consistent with SM predictions, also differentially in several observables
 - Sets competitive bounds on several SMEFT Wilson coefficients
 - Preliminary results shown at LLWI '22, now submitted to JHEP (arXiv:2208.12095)
- Enhanced in topologies with larger $q\bar{q}$ -initiated production for example $t\bar{t}\gamma$, $t\bar{t}W$

Charge asymmetry in $t\bar{t}\gamma$

- Additional interference effects present in $t\bar{t}\gamma$:
 - QED initial-state and final-state radiation + higher-order EW
 - Larger dominance of $q\bar{q}'$ initial state Overall effect: negative $A_c^{tt\gamma}$ of 1–2% expected
- Analysis only considers $t\bar{t}\gamma$ production as signal photons from top decay = background
 - Selection: I+jets (\geq 4 jets, \geq 1 b-tag), 1 photon, Z veto for $m(l, \gamma)$
 - Fake photons $(e \rightarrow \gamma \text{ and } h \rightarrow \gamma)$ estimated as in $tq\gamma$ analysis
 - KLFitter-based reconstruction of $t\bar{t}$ system (top and W mass constraints)
 - NN output discriminant to construct signal-/background-enriched regions
- A_C extracted from unfolded $|y_t| |y_{\bar{t}}|$ distribution **consistent with SM**

 $A_c = -0.003 \pm 0.024 \text{ (stat.)} \pm 0.017 \text{ (syst.)}$

Submitted to JHEP (Jan 2023) [arXiv:2301.04245]

Charge asymmetry in $t\bar{t}W$

- Two reasons for charge asymmetry enhancement:
 - Larger dominance of $q\bar{q}'$ initial state
 - W boson radiated in initial state polarises $q\bar{q}'$ initial state and in turn also the $t\bar{t}$ pair
- Best experimental handle on charge asymmetry is asymmetry in leptons ($t\bar{t}$ dilepton):

 $A_{\rm c}^{\ell} = \frac{N\left(\Delta\eta^{\ell} > 0\right) - N\left(\Delta\eta^{\ell} < 0\right)}{N\left(\Delta\eta^{\ell} > 0\right) + N\left(\Delta\eta^{\ell} < 0\right)}$

- Several signal and control regions included in the fit
- Trilepton channel: lepton-to-top assignment via BDT
- A_C^l extracted at reco. level, then **unfolded to particle level**

 $A_{\rm c}^{\ell} (t\bar{t}W)^{\rm PL} = -0.112 \pm 0.170 \,(\text{stat.}) \pm 0.054 \,(\text{syst.})$

consistent with $A_c^{\ell}(t\bar{t}W)_{SM}^{PL} = -0.063 + 0.007 + 0.004$ (scale) ± 0.004 (MC stat.)

FCNC – introduction

- FCNC = flavor-changing neutral currents (H, γ, g, Z)
 - Forbidden at tree level in the Standard Model
 - Expressed as branching ratio (BR) with respect to $t \rightarrow Wb$
 - Heavily suppressed through GIM mechanism (BRs $\ll 10^{-10}$)
- Many BSM models predict enhanced FCNC BRs
 - Examples: 2HDM (flavor-conserving/violating), RPV SUSY, ...
- Observation of FCNC would be an indication for BSM!
- FCNC measurable in both top-quark production and decay vertices

FCNC – introduction

- FCNC = flavor-changing neutral currents (H, γ, g, Z)
 - Forbidden at tree level in the Standard Model
 - Expressed as branching ratio (BR) with respect to $t \rightarrow Wb$

Updates since LLWI 2022:

 $t \to qg$

• Presented results now published as Eur. Phys. J. C 82 (2022) 334

 $t \to q Z$

- Preliminary results shown at LLWI 2022
- Now submitted to Phys. Rev. D [arXiv:2301.11605]

FCNC search for $tH(\tau\tau)$

- **Two processes** measured simultaneously:
 - tH production
 - **Decay** of top quark via H in pair production
 - Both probe FCNC *tuH* and *tcH* vertices (one) top quark decays via SM vertex
- Various analysis regions based on W (t_l or t_h) and τ -lepton decay channels (τ_{lep}/τ_{had})
- Additional control regions for $t\bar{t}$ background with τ -fakes (difference: 2 leptons or 2 b-tags)
- **BDTs employed in all signal regions** for S/B discrimination:
 - Large list of input features used (E_T^{miss} , invariant masses, ...)
 - Among others: estimate of 4-momenta of invisible τ -lepton decay products through a kinematic χ^2 fit (Higgs mass constraint)
 - All signals combined: tH and tt(qH) as well as tuH and tcH

FCNC search for $tH(\tau\tau)$

- Slight excess over data observed (2.3σ)
- Dominant uncertainties: stats, MC statistics, fake estimation
- Translatable into relevant SMEFT Wilson coefficients:

$$\mathcal{L}_{EFT} = \frac{C_{u\phi}^{i3}}{\Lambda^2} (\phi^{\dagger}\phi)(\bar{q}_i t)\tilde{\phi} + \frac{C_{u\phi}^{3i}}{\Lambda^2} (\phi^{\dagger}\phi)(\bar{t}q_i)\tilde{\phi}$$

12

Associated production + new phenomena with top quarks (K. Zoch / ATLAS)

Submitted to Phys. Lett. B (May 2022) [arXiv:2205.02537]

FCNC in top-photon couplings

- **Two processes** measured simultaneously:
 - Single-top + photon **production**
 - **Decay** of top quark via photon in pair production
 - Both probe FCNC $tu\gamma$ and $tc\gamma$ vertices (one) top quark decays via SM vertex
- Event selection: high- $p_{\rm T}$ photon, lepton, MET > 30 GeV, ≥1 jet
- Prompt photon backgrounds controlled through:
 - CR $t\bar{t}\gamma$ (with ≥4 jets, b-tagging with ≥1b@70%, ≥2@77%)
 - CR $W\gamma$ + jets (veto on b-tags (b@77%), Z veto for $m(e,\gamma)$)
- Fake photons $(e \rightarrow \gamma \text{ and } h \rightarrow \gamma)$ estimated as in $tq\gamma$ analysis

FCNC in top-photon couplings

- **Multiclass NN** with output nodes for two signal types + background
 - Trained separately for $tu\gamma$ and $tc\gamma$ due to impact of different PDFs
 - Combine into single S vs. B discriminant with hyperparameter a

$$\mathcal{D} = \ln \frac{a \cdot y_{\text{prod}} + (1 - a) \cdot y_{\text{dec}}}{y_{\text{bkg}}}$$

- **Agreement** between data and SM prediction within uncertainties
- Limits on coupling parameters and BRs calculated using CL_s method from 95% CL upper limit on the signal contribution
 - Dominant uncertainties: $tq\gamma$ theory cross-section, $h \rightarrow \gamma$ estimate $(tc\gamma)$

14

FACULTY OF SCIENCE

ATL-PHYS-PUB-2022-051

Conclusions

- LHC Run 2 has enabled many exciting top-quark measurements!
 - Expect further rapid improvements for statistically limited measurements in Run 3 and with the HL-LHC!
 - Observation of tqγ production with high precision this adds to the list of observed rare top-quark production modes
- Evidence for charge asymmetry in $t\bar{t}$ pairs seen by ATLAS
 - Enhanced in topologies with larger $q\bar{q}$ -initiated production for example $t\bar{t}\gamma$, $t\bar{t}W$
 - Measurements consistent with SM predictions so far still limited by statistics
- FCNC in top-quark production and decays probed for various vertices
 - New ATLAS measurements for FCNC branching ratios $t \rightarrow qH$ and $t \rightarrow q\gamma$
 - Most stringent limits on these branching ratios observed by ATLAS to date

Full list of public ATLAS top physics results

ATL-PHYS-PUB-2022-049

Backup

16

20 Feb 2023

Associated production + new phenomena with top quarks (K. Zoch / ATLAS)

Submitted to Phys. Rev. Lett. (Feb 2023) [arXiv:2302.01283]

Backup – $tq\gamma$ observation

Left: parton level

Right: particle level

Uncertainty	$\Delta\sigma/\sigma$
$t\bar{t}\gamma$ modeling	±5.5%
Background MC statistics	±3.5%
$tq\gamma$ MC statistics	±3.3%
$t\bar{t}$ modeling	±2.4%
$tq\gamma$ modeling	±2.0%
$t (\rightarrow \ell \nu b \gamma) q$ modeling	±1.9%
Additional background uncertainties	±1.9%
$t (\rightarrow \ell \nu b \gamma) q$ MC statistics	±0.3%
$h \rightarrow \gamma$ photon fakes	±2.0%
Lepton fakes	±1.9%
$e \rightarrow \gamma$ photon fakes	±0.6%
Luminosity	±2.2%
Pileup	±1.2%
Jets and $E_{\rm T}^{\rm miss}$	±3.6%
Photons	±2.5%
Leptons	±0.9%
<i>b</i> -tagging	$\pm 0.9\%$
Total systematic uncertainty	±10.6%

Uncertainty	$\Delta\sigma/\sigma$
$t\bar{t}\gamma$ modeling	±5.5%
Background MC statistics	±3.6%
$t (\rightarrow \ell \nu b \gamma) q$ modeling	±3.3%
$tq\gamma$ MC statistics	±3.0%
$t\bar{t}$ modeling	±2.3%
$tq\gamma$ modeling	±2.3%
Additional background uncertainties	±2.0%
$t (\rightarrow \ell \nu b \gamma) q$ MC statistics	±0.3%
Lepton fakes	±2.2%
$h \rightarrow \gamma$ photon fakes	±2.1%
$e \rightarrow \gamma$ photon fakes	±0.6%
Luminosity	±2.2%
Pileup	±1.3%
Jets and $E_{\rm T}^{\rm miss}$	±3.5%
Photons	±2.5%
Leptons	$\pm 0.9\%$
<i>b</i> -tagging	±0.7%
Total systematic uncertainty	±10.7%

18

UNIVERSITÉ DE GENÈVE

Submitted to Phys. Rev. Lett. (Feb 2023) [arXiv:2302.01283]

Backup – $tq\gamma$ observation

Left: parton level

Right: particle level

20 Feb 2023

Associated production + new phenomena with top quarks (K. Zoch / ATLAS)

Backup – $t\bar{t}$ charge asymmetry

19

Associated production + new phenomena with top quarks (K. Zoch / ATLAS)

Backup – $t\bar{t}$ charge asymmetry

20

Associated production + new phenomena with top quarks (K. Zoch / ATLAS)

Backup – $t\bar{t}$ charge asymmetry

21

20 Feb 2023

Associated production + new phenomena with top quarks (K. Zoch / ATLAS)

Backup – $t\bar{t}$ charge asymmetry

Submitted to JHEP (Aug 2022) [arXiv:2208.12095]

22

Associated production + new phenomena with top quarks (K. Zoch / ATLAS)

Backup – $t\bar{t}\gamma$ charge asymmetry

23

20 Feb 2023

Associated production + new phenomena with top quarks (K. Zoch / ATLAS)

Backup – $t\bar{t}\gamma$ charge asymmetry

Total uncertainty	0.029
Statistical uncertainty	0.024
MC statistical uncertainties	
Background processes	0.008
$t\bar{t}\gamma$ production	0.004
Modelling uncertainties	
$t\bar{t}\gamma$ production modelling	0.003
Background modelling	0.002
Prompt background normalisation	0.002
Experimental uncertainties	
Jet	0.009
Fake-lepton background estimate	0.005
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.005
Fake-photon background estimates	0.003
Photon	0.001
<i>b</i> -tagging	0.001
Other experimental	0.004

24

Submitted to Phys. Lett. B (Dec 2022)

[arXiv:2212.10552]

Backup – $t\bar{t}W$ charge asymmetry

25

Submitted to JHEP (Jan 2023)

[arXiv:2301.04245]

Associated production + new phenomena with top quarks (K. Zoch / ATLAS)

Backup – $t\bar{t}W$ charge asymmetry

26

Backup – $t\bar{t}W$ charge asymmetry

	$\left \Delta A_{\rm c}^{\ell}(t\bar{t}W) \right $
Experimental uncertainties	
Jet energy resolution	0.013
Pile-up	0.007
b-tagging	0.005
Leptons	0.004
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.004
Jet energy scale	0.003
Luminosity	0.001
MC modelling uncertainties	
$t\bar{t}W { m modelling}$	0.013
$t\bar{t}Z$ modelling	0.010
$\mathrm{HF}_{e/\mu}$ modelling	0.006
$t\bar{t}H$ modelling	0.005
Other uncertainties	
$\Delta \eta^{\pm}$ CR-dependency	0.046
MC statistical uncertainty	0.019
Data statistical uncertainty	0.136
Total uncertainty	0.145
	•

	$\Delta A_{\rm c}^{\ell} (t\bar{t}W)^{\rm PL}$
Experimental uncertainties	
Leptons	0.014
Jet energy resolution	0.011
Pile-up	0.008
Jet energy scale	0.004
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.002
Luminosity	0.001
Jet vertex tagger	0.001
MC modelling uncertainties	
$t\bar{t}W$ modelling	0.022
$t\bar{t}Z$ modelling	0.017
$\mathrm{HF}_{e/\mu}$ modelling	0.015
Others modelling	0.015
WZ/ZZ + jets modelling	0.014
$t\bar{t}H$ modelling	0.006
Other uncertainties	
Unfolding bias	0.004
$\Delta \eta^{\pm}$ CR-dependency	0.039
MC statistical uncertainty	0.027
Response matrix	0.009
Data statistical uncertainty	0.170
Total uncertainty	0.179

27

20 Feb 2023

Left: reconstr. level

Right: particle level

Backup – *ttW* charge asymmetry

Submitted to JHEP (Jan 2023) [arXiv:2301.04245]

Left: reconstr. level

Right: particle level

UNIVERSITÉ DE GENÈVE

Backup – FCNC $tH(\tau\tau)$

29

Associated production + new phenomena with top quarks (K. Zoch / ATLAS)

Backup – FCNC $tH(\tau\tau)$

30

Associated production + new phenomena with top quarks (K. Zoch / ATLAS)

Backup – FCNC $tH(\tau\tau)$

31

Associated production + new phenomena with top quarks (K. Zoch / ATLAS)

Backup – FCNC $tH(\tau\tau)$

32

Associated production + new phenomena with top quarks (K. Zoch / ATLAS)

Backup – FCNC $tH(\tau\tau)$

- Analysis regions:
 - $t_h \tau_{lep} \tau_{had}$ (opposite charge) τ -lepton pair plus \geq 3 jets with exactly 1 b-jet
 - $t_l \tau_{had} \tau_{had}$ (opposite charge) τ -lepton pair plus exactly 1 lepton, ≥1 jets, exactly 1 b-jet
 - $t_l \tau_{had}$ for events with failed τ_{had} reconstruction. Same-sign lepton– τ_{had} pair plus ≥2 jets, exactly 1 b-jet
 - $t_h \tau_{had} \tau_{had}$ uses di- τ -lepton trigger. Plus \geq 3 jets, exactly 1 b-jet

Backup – FCNC $tH(\tau\tau)$

	Regions	<i>b</i> -jets	Light-flavour jets	Leptons	Hadronic τ decays	Charge
	$t_\ell au_{ m had} au_{ m had}$	1	≥ 0	1	2	$ au_{ m had} au_{ m had}{ m OS}$
	$t_\ell \tau_{had}$ -1j	1	1	1	1	$t_\ell \tau_{\rm had} \ { m SS}$
	$t_\ell \tau_{\rm had}$ -2j	1	2	1	1	$t_\ell au_{\rm had} { m SS}$
SR	$t_h \tau_{\text{lep}} \tau_{\text{had}} - 2j$	1	2	1	1	$ au_{ m lep} au_{ m had}~{ m OS}$
	$t_h \tau_{\text{lep}} \tau_{\text{had}} - 3j$	1	≥ 3	1	1	$ au_{ m lep} au_{ m had}~{ m OS}$
	$t_h \tau_{had} \tau_{had}$ -2j	1	2	0	2	$ au_{ m had} au_{ m had} { m OS}$
	$t_h \tau_{had} \tau_{had}$ -3j	1	≥ 3	0	2	$ au_{ m had} au_{ m had}{ m OS}$
VP	$t_{\ell} \tau_{\rm had} \tau_{\rm had}$ -SS	1	≥ 0	1	2	$ au_{ m had} au_{ m had}~ m SS$
V IX	$t_h \tau_{had} \tau_{had}$ -3j SS	1	≥ 3	0	2	$ au_{ m had} au_{ m had}~ m SS$
	$t_\ell t_\ell 1 b \tau_{\rm had}$	1	≥ 0	2	1	$t_\ell t_\ell \text{ OS}$
	$t_\ell t_\ell 2b \tau_{\rm had}$	2	≥ 0	2	1	$t_\ell t_\ell \text{ OS}$
CPtt	$t_{\ell}t_h 2b\tau_{had}$ -2jSS	2	2	1	1	$t_\ell \tau_{\rm had} \ { m SS}$
CKu	$t_{\ell}t_h 2b\tau_{had}$ -2jOS	2	2	1	1	$t_\ell \tau_{\rm had} {\rm OS}$
	$t_{\ell}t_h 2b\tau_{had}$ -3jSS	2	≥ 3	1	1	$t_\ell au_{\rm had} { m SS}$
	$t_{\ell}t_h 2b\tau_{had}$ -3jOS	2	≥ 3	1	1	$t_\ell \tau_{\rm had} {\rm OS}$

34

Backup – FCNC $tH(\tau\tau)$

$\Delta \mathcal{B} [10^{-5}]$		
$t \rightarrow uH$	$t \to cH$	
0.6	0.8	
0.7	0.7	
1.2	1.7	
2.5	3.3	
2.7	3.7	
2.6	3.9	
2.1	3.0	
3.3	4.7	
1.8	1.5	
3.3	4.4	
1.7	2.4	
5.1	7.1	
10.1	14.1	
14.9	19.4	
18	24	
	$\Delta \mathcal{B} \begin{bmatrix} t \to uH \\ 0.6 \\ 0.7 \\ 1.2 \\ 2.5 \\ 2.7 \\ 2.6 \\ 2.1 \\ 3.3 \\ 1.8 \\ 3.3 \\ 1.7 \\ 5.1 \\ 10.1 \\ 14.9 \\ 18 \end{bmatrix}$	

35

Backup – FCNC $tH(\tau\tau)$

Table 1: Summary of 95% CL upper limits on $\mathcal{B}(t \to cH)$ and $\mathcal{B}(t \to uH)$, significance and best-fit branching ratio in the signal regions with a benchmark branching ratio of $\mathcal{B}(t \to qH) = 0.1\%$. The expected significance is obtained from an Asimov fit with a signal injection corresponding to a branching ratio of 0.1%.

	$t \rightarrow cH$			$t \rightarrow uH$			
Signal Region	95% CL upper limit $[10^{-3}]$	Significance	$\mathcal{B}\left[10^{-3} ight]$	95% CL upper limit $[10^{-3}]$	Significance	$\mathcal{B}\left[10^{-3} ight]$	
	Observed (Expect	red)		Observed (Expect	ted)		
$t_h \tau_{\rm had} \tau_{\rm had}$ -2j	$1.80(2.72^{+1.18}_{-0.76})$	-0.96(0.78)	$-1.03^{+1.03}_{-1.03}$	$1.07(1.60^{+0.71}_{-0.45})$	-0.90(1.31)	$-0.55^{+0.58}_{-0.58}$	
$t_h \tau_{had} \tau_{had}$ -3j	$1.14(1.02^{+0.45}_{-0.29})$	0.34 (1.87)	$0.16_{-0.47}^{+0.47}$	$0.97(0.86^{+0.38}_{-0.24})$	0.36 (2.25)	$0.14_{-0.40}^{+0.40}$	
Hadronic combination	$1.00(0.95^{+0.42}_{-0.27})$	0.26(1.99)	$0.11_{-0.43}^{+0.43}$	$0.76(0.76^{+0.33}_{-0.21})$	0.12 (2.52)	$0.04^{+0.34}_{-0.34}$	
$t_\ell \tau_{\rm had}$ -2j	$4.77(4.23^{+1.72}_{-1.18})$	0.41 (0.47)	$0.85^{+2.06}_{-2.06}$	$3.84(3.48^{+1.42}_{-0.97})$	0.36(0.58)	$0.61^{+1.68}_{-1.68}$	
$t_\ell \tau_{\rm had}$ -1j	$3.80(3.56^{+1.51}_{-0.99})$	0.22 (0.58)	$0.36^{+1.70}_{-1.70}$	$2.98(2.78^{+1.17}_{-0.78})$	0.22 (0.73)	$0.29^{+1.33}_{-1.33}$	
$t_h \tau_{\text{lep}} \tau_{\text{had}}$ -2j	$4.71(5.71^{+2.68}_{-1.60})$	-0.52(0.38)	$-1.36^{+2.56}_{-2.56}$	$2.50(2.97^{+1.25}_{-0.83})$	-0.47(0.70)	$-0.66^{+1.38}_{-1.38}$	
$t_h \tau_{\text{lep}} \tau_{\text{had}}$ -3j	$2.71(2.71^{+1.25}_{-0.76})$	-0.03 (0.77)	$-0.03^{+1.26}_{-1.26}$	$2.02(2.03^{+0.86}_{-0.57})$	-0.05 (0.99)	$-0.03^{+0.98}_{-0.98}$	
$t_\ell \tau_{\rm had} \tau_{\rm had}$	$1.35(0.61\substack{+0.27\\-0.17})$	2.64 (3.31)	$0.74_{-0.33}^{+0.33}$	$0.97(0.44^{+0.19}_{-0.12})$	2.64 (4.38)	$0.53_{-0.24}^{+0.24}$	
Leptonic combination	$1.25(0.58^{+0.25}_{-0.16})$	2.61 (3.46)	$0.69^{+0.31}_{-0.31}$	$0.88(0.41^{+0.18}_{-0.11})$	2.60 (4.62)	$0.49^{+0.22}_{-0.22}$	
Combination	$0.94(0.48^{+0.20}_{-0.14})$	2.34 (4.02)	$0.51^{+0.24}_{-0.24}$	$0.69(0.35^{+0.15}_{-0.10})$	2.31 (5.18)	$0.37^{+0.18}_{-0.18}$	

36

Backup – FCNC top-photon

37

Associated production + new phenomena with top quarks (K. Zoch / ATLAS)

Submitted to Phys. Lett. B (May 2022) [arXiv:2205.02537]

Backup – FCNC top-photon

38

Backup – FCNC top-photon

Effective coupling	Coefficient limits		Coupling	BR limits $[10^{-5}]$	
Enective coupling	Expected	Observed	Coupling	Expected	Observed
$ C_{uW}^{(13)*} + C_{uB}^{(13)*} $	$0.104^{+0.020}_{-0.016}$	0.103	$t \rightarrow u\gamma LH$	$0.88^{+0.37}_{-0.25}$	0.85
$ C_{uW}^{(31)} + C_{uB}^{(31)} $	$0.122^{+0.023}_{-0.018}$	0.123	$t \rightarrow u\gamma \mathrm{RH}$	$1.20^{+0.50}_{-0.33}$	1.22
$ C_{\rm uW}^{(23)*} + C_{\rm uB}^{(23)*} $	$0.205^{+0.037}_{-0.031}$	0.227	$t \to c\gamma LH$	$3.40^{+1.35}_{-0.95}$	4.16
$ C_{\rm uW}^{(32)} + C_{\rm uB}^{(32)} $	$0.214^{+0.039}_{-0.032}$	0.235	$t \to c\gamma \mathrm{RH}$	$3.70^{+1.47}_{-1.03}$	4.46

40

Backup – FCNC top–photon

Submitted to Phys. Lett. B (May 2022)

[arXiv:2205.02537]

UNIVERSITÉ **DE GENÈVE** FACULTY OF SCIENCE