Probing the nature of electroweak symmetry breaking with Higgs boson pairs in ATLAS

Arantxa Ruiz Martínez (<u>aranzazu.ruiz.martinez@cern.ch</u>) on behalf of the ATLAS Collaboration

Lake Louise Winter Institute 19-25 February 2023

Higgs boson discovery

PHYSICS FETTERS F

nature

F. Englert & R. Brout, PRL 13, 321-323 (1964) P. W. Higgs, PRL 13, 508-509 (1964) ATLAS Collaboration, PLB 716, 1–29 (2012)

CMS Collaboration, PLB 716, 30–61 (2012)

THE BEH-MECHANISM, INTERACTIONS WITH SHORT RANGE FORCES AND SCALAR PARTICLES

10th anniversary of the Higgs boson discovery CERN, 4 July 2022 https://indico.cern.ch/event/1135177/

A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery ATLAS Collaboration, Nature 607 (2022) 52-59

A portrait of the Higgs boson by the CMS experiment ten years after the discovery CMS Collaboration, Nature 607 (2022) 60-68

Higgs boson - couplings

DiHiggs production - not observed experimentally (yet)

DiHiggs production search

DiHiggs production x1000 smaller than single Higgs production in the Standard Model

Higgs sector as a portal to new physics BSM:

- Loop corrections including new particles
- > Anomalous couplings between the Higgs boson and other Standard Model particles
- > New resonances $X \rightarrow HH$ (motivated by BSM theories: e.g. 2-Higgs Doublet Model, etc.)

Why the Higgs boson self-coupling is so important?

Transition of the Higgs field to the minimum responsible for the electroweak symmetry breaking mechanism

At high energy (false vacuum) \rightarrow unstable local maximum

At low energy (true vacuum) \rightarrow current universe Vacuum expectation value (v.e.v.): $v = (\sqrt{2} G_{c})^{-1/2} = 246 \text{ GeV}$ Experimental measurements

6

Higgs potential - vacuum stability of the universe

- Higgs boson self-coupling depends on the energy $\lambda(\mu)$
- At high energy $V_{\text{eff}}(h) = \frac{\lambda(\mu)}{4}h^4$
- The Standard Model could have a second "true" minimum (metastability of the universe)
- If there is a deeper minimum, transition can happen via quantum tunnelling

Higgs field Metastable

Current

φ

experimental knowledge

HH VBF production mechanism

- In the SM, the divergences in the (b) and (c) VBF diagrams exactly cancel out due to perturbative unitarity
- As κ_{V} and κ_{2V} depart from their SM value of 1, this canceling out no longer occurs, linear dependence of the cross-section on the effective CoM energy of the incoming vector bosons
- Non-SM κ_v / κ_{2v} scenarios are expected to be to be more energetic and more central in the detector on average

DiHiggs searches - state of the art

1st batch: intermediate Run 2 dataset

Channel	2015-2016 (36 fb ⁻¹)
$HH ightarrow bb \gamma \gamma$	<u>JHEP 11 (2018) 040</u>
HH ightarrow bb au au	<u>PRL 121 (2018) 191801</u>
$HH \rightarrow bbbb$	<u>JHEP 01 (2019) 030</u>
$HH \rightarrow bbWW^*$	<u>JHEP 04 (2019) 092</u>
$HH \rightarrow WW^*WW^*$	<u>JHEP 05 (2019) 124</u>
$HH \rightarrow WW^* \gamma \gamma$	EPJC 78 (2018) 1007
Combination	<u>PLB 800 (2020) 135103</u>

	bb	ww	ττ	zz	YY	
bb	34%					
ww	25%	4.6%				
ττ	7.3%	2.7%	0.39%			
ZZ	3.1%	1.1%	0.33%	0.069%		
YY	0.26%	0.10%	0.028%	0.012%	0.0005%	

Channel	2015-2018 (126-139 fb ^{−1})
$HH\tobb\gamma\gamma$	PRD 106 (2022) 052001
HH ightarrow bb au au	arXiv:2209.10910, JHEP 11 (2020) 163
$HH \rightarrow bbbb$	arXiv:2301.03212, PRD 105 (2022) 092002, JHEP 07 (2020) 108
$\text{VHH}\rightarrow\text{0L, 1L, 2L, 4b}$	arXiv:2210.05415
Combination	arXiv:2211.01216, ATLAS-CONF-2021-052

2nd batch: full Run 2 dataset

Combination diHiggs searches - non-resonant production

Combination of channels to achieve ultimate sensitivity

6 channels, 36 fb⁻¹ [PLB 800 (2020) 135103]

Obs. (exp.) 95% CL limit: 6.9 (10) x SM prediction

3 channels, 139 fb⁻¹ [arXiv:2211.01216]

Obs. (exp.) 95% CL limit: 2.4 (2.9) x SM prediction 10

Combination diHiggs searches - non-resonant production

$\text{HH} \rightarrow \text{bbyy search}$

- Largest BR (H \rightarrow bb) + high resolution (H $\rightarrow \gamma\gamma$)
- Dominant backgrounds: γγ + jets, small contribution from single Higgs
- 4 categories defined based on the four-body mass and BDT score

Parametrization:

• Crystal Ball for HH signal

exp(a·m_{γγ}) for γγ + jets (normalized to sidebands)

$\textbf{HH} \rightarrow \textbf{bbrr search}$

arXiv:2209.10910 [hep-ex], Limit: 4.7 (3.9) x SM prediction

$\textbf{HH} \rightarrow \textbf{bbbb search}$

arXiv:2301.03212 [hep-ex], Limit: 5.4 (8.1) x SM prediction

Exploits the decay mode with the largest BR

Main backgrounds: 90% multijet, 10% ttbar

Jet pairing obtained minimizing ΔR separation for the higher-p_T jet pair (efficiency: 90%)

Top-veto discriminant:

$$X_{Wt} = \min\left[\sqrt{\left(\frac{m_{jj} - m_W}{0.1m_{jj}}\right)^2 + \left(\frac{m_{jjb} - m_t}{0.1m_{jjb}}\right)^2}\right]$$

 X_{HH} discriminant:

$$X_{HH} = \sqrt{\left(\frac{m_{H1} - 124 \,\text{GeV}}{0.1 \, m_{H1}}\right)^2 + \left(\frac{m_{H2} - 117 \,\text{GeV}}{0.1 \, m_{H2}}\right)^2}$$

Results:

	Observed Limit	-2σ	-1σ	Expected Limit	$+1\sigma$	$+2\sigma$
$\mu_{\rm ggF}$	5.5	4.4	5.9	8.2	12.4	19.6
μ_{VBF}	130	70	100	130	190	280
$\mu_{\rm ggF+VBF}$	5.4	4.3	5.8	8.1	12.2	19.1

Improvements for Run 3

HH → bbbb search in Run 2 Phys. Rev. D 105 (2022) 092002

"The efficiency at low resonance masses is mainly limited by the trigger"

Run 3

- > 80% improvement in the trigger efficiency for the HH \rightarrow bbbb signal (asymmetric 3-jet trigger instead of symmetric 4-jet trigger at Level-1)
- > New diHiggs delayed stream with increased rate

Prospects

HL-LHC (3000 fb⁻¹):

- 3.4 σ SM HH evidence combining bb $\gamma\gamma$, bb $\tau\tau$ and bbbb in ATLAS
- 5 σ SM HH observation expected to be reached combining ATLAS and CMS

Conclusions

- After the discovery of the Higgs boson, the observation of the Higgs boson self-coupling is one of the main priorities of the LHC physics program (physics driver)
- State-of-the-art diHiggs searches in ATLAS using the full Run 2 dataset presented, good agreement with SM expectations observed so far
- A 95% CL upper limit of 2.4 times the cross section predicted by the SM is set on HH non-resonant production (combining the most relevant channels bbγγ, bbττ, bbbb)
- Run 3 effort starting now, it can be a game-changer for HH
- Vital the optimization of the trigger and analysis techniques to maximize the HH signal
- According to the projections, observation of the SM HH production expected at the end of the HL-LHC (3000 fb⁻¹)
- ATLAS public results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HDBSPublicResults</u>

Higgs boson - production mechanisms

Higgs boson - decay channels

Trilinear coupling HHH

arXiv:2211.01216 [hep-ex]

Trilinear coupling HHH - ATLAS vs CMS

ATLAS, <u>arXiv:2211.01216</u> [hep-ex] Limit: 2.4 x SM prediction $-0.4 < \kappa_{\lambda} < 6.3$

CMS, <u>Nature 607 (2022) 60-68</u> Limit: 3.4 x SM prediction $-1.24 < \kappa_{\lambda} < 6.49$

95% CL upper limit on HH signal strength μ_{HH}

22

95% CL limit on σ (pp \rightarrow HH) / σ_{Theory}

Quartic coupling VVHH - ATLAS vs CMS

ATLAS, Nature 607 (2022) 52-59

CMS, <u>Nature 607 (2022) 60-68</u>

Combination of diHiggs resonant searches

HL-LHC prospects for HH in ATLAS

ATL-PHYS-PUB-2022-053

HL-LHC prospects for HH in ATLAS

