

Status of the LHC Experimental Program (ATLAS/CMS)

> Colin Jessop University of Notre Dame

> > February 23, 2023

Contents

- LHC Status
- ATLAS/CMS status
- Physics Highlights
- HL-LHC upgrade status
- Conclusion

Overall view of the LHC experiments.

The LHC Plan

4

LHC UPGRADES DURING LS2

absorber and two new neutra

LHC Operation in Run 3 and beyond

NOTRE DAME

Rapid ramp up to $L = 2 \times 10^{34} cm^2 s^{-1}$ (Twice original design luminosity)

		√ <i>s</i> (TeV)	∫ <i>Ldt</i> (fb-1)
Run 1	2010-13	7/8	5/20
Run 2	2015-18	13.1	138
Run 3	2022	13.6	40
Run 3	2023-25	13.6	210
Run 4	2028-38	14.0	3000

20% less running time in Run 3 due to European energy crisis

7

ATLAS Detector

ATLAS Upgrades for Run 3

MUON NEW SMALL WHEELS (NSW)

NOTRE DAME

Higher granularity and

higher luminosity

better muon coverage for

Installed new muon detectors with precision tracking and muon selection capabilities. Key preparation for the HL-LHC.

NEW READOUT SYSTEM FOR THE NSWs

The NSW system includes two million micromega readout channels and 350 000 small strip thin-gap chambers (sTGC) electronic readout channels.

LIQUID ARGON CALORIMETER

New electronics boards installed, increasing the granularity of signals used in event selection and improving trigger performance at higher luminosity.

Higher granularity calorimetry readout for higher luminosity

TRIGGER AND DATA ACQUISITION SYSTEM (TDAQ)

Upgraded hardware and software allowing the trigger to spot a wider range of collision events while maintaining the same acceptance rate.

Installed small monitored drift tube (sMDT) detectors alongside a new generation of resistive plate chamber (RPC) detectors, extending the trigger coverage in preparation for the HL-LHC.

ATLAS FORWARD PROTON (AFP)

Re-designed AFP time-of-flight detector, allowing insertion into the LHC beamline with a new "out-ofvacuum" solution.

NOTRE DAME

10

The CMS detector for Run 3

ATLAS/CMS Run 3 Data taking

UNIVERSITY OF NOTRE DAME

畵

- Good startup of both ATLAS/CMS for Run 3
- Upgrades all working well in both experiments
- Higher pileup (multiple collisions per event)

First Results from Run 3

Inclusive tf cross section [pb]

 $t\bar{t}$ cross-section measurements from a few days of data (1.2 fb⁻¹)

• 10% rise in
$$\sigma_{t\bar{t}}$$
 for \sqrt{s} from $13 \rightarrow 13.6 \text{ TeV}$

 $\sigma_{t\bar{t}}(Theory) = 921^{+29}_{-37}pb$ @ NNLO

CMS (CMS-PAS-TOP-22-012)

NOTRE DAME

 $\sigma_{t\bar{t}} = 887^{+43}_{-41}(stat. + sys.) \pm 53(lumi)pb$

ATLAS (ATLAS-CONF-2022-070)

 $\sigma_{t\bar{t}} = 830 \pm 12 \text{ (stat.)} \pm 26(\text{syst.}) \pm 83(\text{lumi})pb$

14

Experiment at the LHC, CERN recorded: 2022-Nov-18 15:50:14.858368 GMT / Event / LS: 362293 / 24480852 / 27

Heavy Ion run postponed to 2023 but very short run to commission detectors in Nov 2022

Recent Physics Highlights

- First batch of full Run 3 results targeted for summer. Possibly some at Moriond
- Recent papers are all from Run 2 dataset
- Many papers produced in past year
- Pick a few highlights.

The Higgs @ 10 years

In July 2022 two papers published in Nature to summarize the understanding of the Higgs Boson 10 years after the discovery.

Approximately 8 Million Higgs Bosons produced in Run 2 allowing a full program of studies

Nature 607, pages 52-59 (ATLAS)/60-68(CMS) 2022

Higgs Production Mechanisms

NOTRE DAME

 κ_V and κ_f parameterize new physics contributions. In the SM they are both =1

Higgs Decay Modes

NOTRE DAME

 κ_V and κ_f parameterize new physics contributions. In the SM they are both =1

Constraints on κ_V and κ_f

NOTRE DAME

No signs yet of deviations from the SM in the Higgs sector

HH production

NOTRE DAME

HH production probes Higgs self interaction λ

Help constrain the vacuum potential which may be meta-stable

```
\sigma_{HH}^{SM} expected to be ~ 10<sup>-3</sup> \sigma_{H}^{SM}
```

Major goal of HL-LHC but LHC searches are surprisingly sensitive

21

HH production limits

https://arxiv.org/abs/2211.01216

NOTRE DAME

No sign yet but intriguing possibility for Run 3 (LHC) and seems in range for SLHC

Search for $H \rightarrow c\bar{c}$

Search for $H \rightarrow e^+e^-$

- Very rare decay in SM. $B_{SM}(H \rightarrow e^+e^-) \sim 5 \times 10^{-9}$
- Only direct probe of H-ee Yukawa coupling.

NOTRE DAME

- Could be enhanced by BSM e.g 2HDM models
- Analysis strategy similar to $H \rightarrow \gamma \gamma$ but $\gamma \rightarrow e$

CMS: HIG-21-015

 $B(H \to e^+e^-) < 3 \times 10^{-4} @ 95\% \text{ C. L}$

ATLAS: Search for New Physics with Higgs

CMS: Search for $Y \rightarrow$ to VV/VH

Here Y is a Z' or Graviton/Radion

All hadronic merged topologies with machine learning algorithms applied to jet substructure

Final discriminating observable:

3D(m_{JJ}, m_{J1}, m_{J2})

UNIVERSITY OF NOTRE DAME

. الله

 $\begin{array}{ll} \mathsf{Z'} \rightarrow \mathsf{VV+VH:} & m_{\mathsf{V'}} > 4.8 \ \text{TeV} \\ \text{Radion} \rightarrow \mathsf{VV:} & m_{\mathsf{V'}} > 2.7 \ \text{TeV} \\ \text{Graviton} \rightarrow \mathsf{VV:} & m_{\mathsf{V'}} > 1.4 \ \text{TeV} \end{array}$

Max. excess at 2.9 TeV (local 3.6 σ , global 2.3 σ)

https://arxiv.org/abs/2210.00043

CMS: $\phi \rightarrow \tau \tau$ search

Search for additional neutral Higgs (Φ)

NOTRE DAME

Local excesses of 3σ at M_{\Phi}=0.1,1.2 TeV

Many Searches for Heavy Resonances !

ATLAS Heav	che	s* - 9	95% CL Upper Exclusion Limits					ATLAS Preliminary			
Status: July 2022								J	<i>L dt</i> = (3	.6 – 139) fb ⁻¹	\sqrt{s} = 8, 13 TeV
Model	ℓ,γ	Jets†	E ^{miss} T	∫£ dt[fb	-1]	Limit					Reference
$\begin{array}{ccc} & \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \gamma\gamma \\ \text{ADD } \text{ADD } \text{BH multijet} \\ \text{ADD } \text{BH multijet} \\ \text{ADD } \text{BH multijet} \\ \text{Bulk } \text{RS } G_{KK} \to WW \\ \text{Bulk } \text{RS } g_{KK} \to WV \\ \text{Bulk } \text{RS } g_{KK} \to tt \\ \text{2UED} / \text{RPP} \end{array}$	0 e, μ, τ, γ 2 γ - - 2 γ /ZZ multi-chanr → ℓγqq 1 e, μ 1 e, μ 1 e, μ	$1-4j$ $2j$ $\geq 3j$ $-$ nel $2j/1J$ $\geq 1b, \geq 1J/2$ $\geq 2b, \geq 3j$	Yes - - - Yes Yes Yes	139 36.7 37.0 3.6 139 36.1 139 36.1 36.1	Мр Ms Muh Muh Gкк mass Gкк mass Gкк mass KK mass KK mass		2.0	4.5 TeV 2.3 TeV) TeV 3.8 TeV FeV	11.2 TeV 8.6 TeV 8.9 TeV 9.55 TeV	$ \begin{array}{l} n=2 \\ n=3 \ \text{HLZ NLO} \\ n=6 \\ k/\overline{M}_{P}=0.1 \\ k/\overline{M}_{P}=0.1 \\ k/\overline{M}_{P}=1.0 \\ k/\overline{M}_{P}=1.0 \\ r/m=15\% \\ \text{Tref}(1,1), \mathcal{B}(A^{(1,1)} \rightarrow tt)=1 \end{array} $	2102.10874 1707.04147 1703.09127 1512.02586 2102.13405 1808.02380 2004.14636 1804.10823 1803.09678
$\begin{array}{c} \text{SSM } Z' \rightarrow \ell\ell \\ \text{SSM } Z' \rightarrow \tau\tau \\ \text{Leptophobic } Z' \rightarrow \ell\ell \\ \text{Leptophobic } Z' \rightarrow t\ell \\ \text{SSM } W' \rightarrow tr \\ \text{SSM } W' \rightarrow \taur \\ \text{SSM } W' \rightarrow \taur \\ \text{SSM } W' \rightarrow \taur \\ \text{SSM } W' \rightarrow tb \\ \text{HVT } W' \rightarrow WZ \rightarrow \delta \\ \text{HVT } W' \rightarrow WZ \rightarrow \delta \\ \text{HVT } W' \rightarrow WH \rightarrow \delta \\ \text{HVT } Z' \rightarrow ZH \rightarrow \ell\ell\ell \\ \text{LRSM } W_R \rightarrow \mu N_R \end{array}$	2 e, µ 2 τ - 0 e, µ 1 e, µ 1 τ eq model B 1 e, µ ℓ'ℓ' model C 3 e, µ bb model B 1 e, µ 2 µ 2 µ	- 2 b ≥1 b, ≥2 √ - 2 j / 1 J 2 j (VBF) 1-2 b, 1-0 1-2 b, 1-0 1 J	- J Yes Yes Yes J - Yes J - Yes j Yes j Yes j Yes	139 36.1 36.1 139 139 139 139 139 139 139 139 139 80	Z' mass Z' mass Z' mass Z' mass W' mass W' mass W' mass W' mass W' mass W' mass Z' mass W _R mass	340 GeV	2	5.1 TeV 2.42 TeV 1 TeV 4.1 TeV 5.0 Tr 5.0 TeV 4.4 TeV 4.3 TeV 3.3 TeV 3.2 TeV 5.0 TeV 5.0 TeV	eV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V c_H = 1, g_f = 0$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5$ TeV, $g_L = g_R$	1903.06248 1709.07242 1805.08299 2005.05138 1906.05609 ATLAS-CONF-2021-025 ATLAS-CONF-2021-032 2004.14636 ATLAS-CONF-2022-005 HDBS-2020-19 HDBS-2020-19 1904.12679
Cl qqqq Cl llqq Cl eebs Cl µµbs Cl tttt	2 e, μ 2 e 2 μ ≥1 e,μ	2j - 1b ≥1b,≥1j	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ		1.8 1 2.0	FeV) TeV 2.57 TeV		$\begin{array}{c} \textbf{21.8 TeV} & \eta_{LL} \\ \textbf{35.8 TeV} & \eta_{LL} \\ \textbf{g}_{\star} = 1 \\ \textbf{g}_{\star} = 1 \\ C_{4t} = 4\pi \end{array}$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
Axial-vector med. (Dir. Pseudo-scalar med. (I Vector med. Z'-2HDM Pseudo-scalar med. 2	ac DM) 0 e, μ, τ, τ Dirac DM) 0 e, μ, τ, τ I (Dirac DM) 0 e, μ HDM+a multi-chann	v 1−4j v 1−4j 2b	Yes Yes Yes	139 139 139 139	m _{med} m _{med} m _{med}	376 GeV 560 Ge	2. eV	.1 TeV 3.1 TeV		$\begin{array}{l} g_q = 0.25, \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ g_q = 1, \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ \tan\beta = 1, \ g_Z = 0.8, \ m(\chi) = 100 \ {\rm GeV} \\ \tan\beta = 1, \ g_{\chi} = 1, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	2102.10874 2102.10874 2108.13391 ATLAS-CONF-2021-036
Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ 3 rd gen	$2 e 2 \mu 1 \tau 0 e, \mu \geq 2 e, \mu, \geq 1 0 e, \mu, \geq 1 1 \tau$	$ \begin{array}{c} \geq 2 \ j \\ \geq 2 \ j \\ 2 \ b \\ \geq 2 \ j, \geq 2 \ b \\ \tau \geq 1 \ j, \geq 1 \ b \\ \tau 0 - 2 \ j, 2 \ b \\ 2 \ b \end{array} $	Yes Yes Yes Yes Yes Yes Yes	139 139 139 139 139 139 139 139	LQ mass LQ mass LQ ¹ mass LQ ¹ mass LQ ² mass LQ ² mass		1.8 1 1.7 Te 1.2 TeV 1.24 TeV 1.43 TeV 1.26 TeV 1.77 T	TeV eV		$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \mathcal{B}(\mathrm{LQ}_3^u \rightarrow b\tau) = 1 \\ \mathcal{B}(\mathrm{LQ}_3^u \rightarrow t\tau) = 1 \\ \mathcal{B}(\mathrm{LQ}_4^u \rightarrow t\tau) = 1 \\ \mathcal{B}(\mathrm{LQ}_4^d \rightarrow b\tau) = 1 \\ \mathcal{B}(\mathrm{LQ}_4^d \rightarrow b\tau) = 0.5, \ \mathrm{YM} \ \mathrm{coupl.} \end{array}$	2006.05872 2006.05872 2108.07665 2004.14060 2101.11582 2101.12527 2108.07665
$\begin{array}{c} VLQ\;TT \rightarrow Zt + X\\ VLQ\;BB \rightarrow Wt/Zb + \\ VLQ\;BB \rightarrow Wt/Zb + \\ VLQ\;T_{5/3}\;T_{5/3}\;T_{5/3} \rightarrow \\ VLQ\;T \rightarrow Ht/Zt\\ VLQ\;Y \rightarrow Wb\\ VLQ\;B \rightarrow Hb\\ VLL\;t' \rightarrow Zr/H\tau \end{array}$	$\begin{array}{c} 2e/2\mu/\geq 3e\\ x\\ multi-chanr\\ Wt+X\\ 2(SS)/\geq 3e\\ 1e,\mu\\ 1e,\mu\\ 0e,\mu\\ multi-chanr\\ multi-chanr\\ \end{array}$	$\begin{array}{l} \mu \geq 1 \ {\rm b}, \geq 1 \ {\rm j} \\ {\rm rel} \\ ,\mu \geq 1 \ {\rm b}, \geq 1 \ {\rm j} \\ \geq 1 \ {\rm b}, \geq 3 \ {\rm j} \\ \geq 1 \ {\rm b}, \geq 1 \ {\rm j} \\ \geq 2 {\rm b}, \geq 1 \ {\rm j}, \geq \\ {\rm rel} \ \geq 1 \ {\rm j} \end{array}$	- Yes Yes 1J - Yes	139 36.1 36.1 139 36.1 139 139	T mass B mass T _{5/3} mass T mass Y mass B mass r' mass		1.4 TeV 1.34 TeV 1.64 Te 1.8 T 1.85 2.0 898 GeV	V IeV TeV) TeV		$\begin{array}{l} {\rm SU}(2) \ {\rm doublet} \\ {\mathcal B}(T_{5/3} \to Wt) = 1, \ {\rm c}(T_{5/3} Wt) = 1 \\ {\mathcal B}(T_{5/3} \to Wt) = 1, \ {\rm c}(T_{5/3} Wt) = 1 \\ {\mathcal B}(Y \to Wb) = 1, \ {\rm c}_{\rm c}(Wb) = 1 \\ {\mathcal SU}(2) \ {\rm doublet}, \ {\kappa_{\rm B}} = 0.3 \\ {\rm SU}(2) \ {\rm doublet} \\ {\rm SU}(2) \ {\rm doublet} \end{array}$	ATLAS-CONF-2021-024 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018 EXOT-2020-07
Excited quark $q^* \rightarrow q_t$ Excited quark $q^* \rightarrow q_t$ Excited quark $q^* \rightarrow q_t$ Excited quark $b^* \rightarrow b_t$ Excited lepton ℓ^* Excited lepton ν^*	g - y 1 γ g - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j -		139 36.7 36.1 20.3 20.3	q* mass q* mass b* mass t* mass v* mass		1.6 Te ¹	6.7 5.3 TeV 2.6 TeV 3.0 TeV V	TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Type III Seesaw LRSM Majorana γ Higgs triplet $H^{\pm\pm} \rightarrow V$ Higgs triplet $H^{\pm\pm} \rightarrow \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell$ Multi-charged particle Magnetic monopoles	$\begin{array}{c} 2,3,4 e, \mu \\ 2 \mu \\ 2 \mu \\ 2,3,4 e, \mu (S \\ 2,3,4 e, \mu (S \\ 3 e, \mu, \tau \\ 3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	≥2 j 2 j S) various S) – –	Yes 	139 36.1 139 139 20.3 139 34.4	N ⁰ mass N _R mass H ^{±±} mass H ^{±±} mass H ^{±±} mass multi-charged particle m monopole mass	350 GeV 400 GeV	910 GeV 1.08 TeV 1.59 TeV	3.2 TeV V 2.37 TeV		$\begin{array}{l} m(W_R) = 4.1 \mbox{ TeV}, g_L = g_R \\ \mbox{DY production} \\ \mbox{DY production}, \mathcal{B}(H_{1}^{\pm\pm} \rightarrow \ell \tau) = 1 \\ \mbox{DY production}, g_l = 5e \\ \mbox{DY production}, g_l = 1g_D, \mbox{spin 1/2} \end{array}$	2202.02039 1809.11105 2101.11961 ATLAS-CONF-2022-010 1411.2921 ATLAS-CONF-2022-034 1905.10130
√s = 8 Te	v vs = 13 TeV partial data	Vs = 1 full d	ata		10 ⁻¹		1		10	Mass scale [TeV]	C.

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

ATLAS: Observation of single top +photon

NOTRE DAME

- t-channel production with forward jet
- Neural Net background discriminant

 $\sigma_{obs} = 688 \pm 23$ (stat.) +75 (syst.) fb

 $\sigma_{SM theory} = 515^{+36}_{-42}$ fb. @ NLO

Earlier evidence for with CMS (36 fb⁻¹) Phys. Rev. Lett. **121** (2018) 221802

https://arxiv.org/abs/2302.01283

CMS: Top quark Mass from boosted Top

 $tt \rightarrow (bjj) + b\ell v$

NOTRE DAME

https://arxiv.org/abs/2211.01456

- Boosted top ($p_T>400$ GeV)
- one top decays hadronically and forms a merged "fat" jet with sub-structure (jet p_T >400 GeV)
- another top decays leptonically (due to boost, the lepton may not be isolated)
- "fat" jet mass (m_{jet})
- $m_{
 m t}\,=172.\,76\pm0.\,81~{
 m GeV}$

 $= 172.76 \pm 0.22(stat) \pm 0.57(exp) \pm 0.48(model) \pm 0.24(theo) \text{GeV}$

Many Top Mass Measurements ! 31

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots#Top_Quark_Mass

CMS: B

- B→ μμ is highly suppressed in SM, which ca make BSM-induced decays more visible
- Two muons, forming a common displaced vertex MVA to suppress backgrounds.
- Main bkgs: muons from different heavy-flavor mesons muons from B-meson cascade decays $B \rightarrow K\pi, B_s \rightarrow KK$ (mis-id)

$$\begin{split} \mathbf{F}\mathcal{B}(\mathbf{B}^0_{\mathrm{s}} \to \mu^+\mu^-) &= \left[4.02^{+0.40}_{-0.38} \, (\text{stat}) \, {}^{+0.28}_{-0.23} \, (\text{syst}) \, {}^{+0.18}_{-0.15} \, (\mathcal{B}) \right] \times 10^{-9} \\ \mathcal{B}(\mathbf{B}^0 \to \mu^+\mu^-) &< 1.5 \times 10^{-10} \text{ at } 90\% \text{ CL} \end{split}$$

Consistent with SM

NOTRE DAME

https://arxiv.org/abs/2212.10311

μμ

Examples of Feynman diagrams: black – SM particles red/green - BSM

Luminosity at the LHC/HL-LHC

NOTRE DAME

LHC luminosity is limited primiarily by heat dissipation in quad focusing to $2 \times 10^{34} cm^2 s^{-1}$

The HL-LHC – Key developments

Superconducting Nb₃Sn focusing quadrupole

NOTRE DAME

3. Luminosity leveling (by adjusting β^*) to control pileup and quad heating

- 1. Stronger focusing for smaller β^* . Key technology is the use of Nb₃Sn (Niobium Tin) magnets developed in USA. NbTi used now limited to 8T. Nb₃Sn can go to 12-16T
- 2. Crab crossing cavities that rotate beam at interaction point to increase R

4. Double number of protons per bunch

NEW TECHNOLOGIES FOR THE HIGH-LUMINOSITY LHC

Challenges of the Detector Upgrade

• High Luminosity means

NOTRE DAME

- Many collisions (Pileup) (140 to 200 per event)
- High irradiation (up to 1 GigaRad in forward region or close to collision point)

A top pair event with 140 collisions

Strategies to Deal with the Challenges

 Increased use of silicon sensors (high radiation tolerance)

NOTRE DAME

- More granularity in the silicon to deal with the high pileup
- Precision timing (< 50ps resolution) to separate collisions in time as well as space
- Faster processing of data in real time for trigger using modern high speed electronics

Essentially try to maintain or improve the legacy LHC performance in HL-LHC conditions

Precision Timing

NOTRE DAME

Precision timing with 30-50ps resolution allows separation of pileup

Requires dedicated timing layer for tracks and modification of readout for Barrel Calorimeter in CMS. Dedicated endcap timing in ATLAS

NOTRE DAME

Upgraded Trigger and Data Acquisition system

Level-0 Trigger at 1 MHz

Improved High-Level Trigger (150 kHz full-scan tracking)

Electronics Upgrades

LAr Calorimeter Tile Calorimeter Muon system

High Granularity Timing Detector (HGTD)

Forward region (2.4 < $|\eta|$ < 4.0) Low-Gain Avalanche Detectors (LGAD) with 30 ps track resolution

Additional small upgrades

Luminosity detectors (1% precision goal) HL-ZDC

Detailed scope described in 7 TDRs approved by the CERN Research Board in 2017, 2018, 2020

Detector upgrades on schedule. Moving from proto-type to pre-production stage now

CMS Detector Upgrade

Nuclear Research comunications

CMS

CMS Endcap Calorimet

L1-Trigger HLT/DAQ https://cds.cern.ch/record/2714892 https://cds.cern.ch/record/2759072

- Tracks in L1-Trigger at 40 MHz
- PFlow selection 750 kHz L1 output
- HLT output 7.5 kHz
- 40 MHz data scouting

Tracker https://cds.cern.ch/record/2272264

 Si-Strip and Pixels increased granularity Design for tracking in L1-Trigger

Barrel Calorimeters https://cds.cern.ch/record/2283187

- ECAL crystal granularity readout at 40 MHz with precise timing for e/y at 30 GeV
- ECAL and HCAL new Back-End boards

Beam Radiation Instr. and Luminosity http://cds.cern.ch/record/2759074

• Bunch-by-bunch luminosity measurement: 1% offline, 2% online

https://cds.cern.ch/record/2283189 DT & CSC new FE/BE readout

MIP Timing Detector

Precision timing with:

https://cds.cern.ch/record/2667167

• Endcap layer: Low Gain Avalanche Diodes

Barrel layer: Crystals + SiPMs

Calorimeter Endcap

https://cds.cern.ch/record/2293646

Extended coverage to η ≃ 3.8

3D showers and precise timing

Muon systems

Summary and Conclusions

- Excellent startup to Run 3 from LHC and ATLAS/CMS. First round of results due this summer
- ATLAS/CMS continue to mine Run 2 with new and innovative analysis techniques on key measurements and searches
- A number of 2-3 σ excesses to keep an eye on
- High Luminosity LHC and ATLAS/CMS upgrades on schedule
- The following talks will expand on these and present many more new results