

Tracking and Inclusive DIS reconstruction with the ePIC detector at the EIC

S. Maple

What is matter?

- Matter made up of atoms...
- Atoms are made up of protons, neutrons and electrons...
- ... and protons are just 2 up quarks and a down quark?

What is matter?

- Matter made up of atoms...
- Atoms are made up of protons, neutrons and electrons...
- ... and protons are just 2 up quarks and a down quark?
- No they have rich structure and dynamics that are <u>partially</u> understood through years of theoretical and experimental effort!

What is matter?

The observed properties of nucleons/nuclei such as <u>mass</u> and <u>spin</u>, emerge out of a complicated system of quarks and gluons

Some details are missing...

- How do the nucleonic properties such as mass and spin emerge from partons and their underlying interactions?
- How are sea quarks and gluons, and their spins, distributed in position and momentum space inside the nucleon?

Electron ring added to existing RHIC complex

Filling in the gaps \rightarrow build an EIC

- The Electron Ion Collider (EIC) will be the world's first:
- High luminosity ep collider: *L*_{max} = 10³⁴ cm⁻²s⁻¹
- Polarised target collider: ~70% (leptons and light nuclei)
- eA collider: protons/deuterons up to Uranium

Deep Inelastic Scattering (DIS)

- Inclusive DIS No constraints on hadronic final state (HFS)
 - Probes longitudinal structure of protons/nuclei
 - **Requires:** large acceptance, high quality eID, high quality reconstruction
- Semi-Inclusive DIS tag 1 or more hadrons in HFS
 - Quark flavour separation, access to transverse structure
 - Also requires: PID, heavy flavour from vertexing

- Exclusive/Diffractive all final state particles measured (proton intact)
- 3D structure of nucleons (tomography)
- Requires: proton tagging at far forward angles, high luminosity

The ePIC Detector

- Asymmetric, compact central detector ($|\eta| < 4$)
- Extensive beamline instrumentation
 - Roman pots, Off momentum detectors, Zero Degree Calorimeters
 - Electron tagger, luminosity monitor

Magnet

New 1.7 T SC solenoid, 2.8 m bore diameter

Tracking

- Si Vertex Tracker MAPS wafer-level stitched sensors (ALICE ITS3)
- Si Tracker MAPS barrel and disks
- Gaseous tracker: MPGDs (μRWELL, MMG) cylindrical and planar

PIC

- high performance DIRC (hpDIRC)
- dual RICH (aerogel + gas) (forward)
- proximity focussing RICH (backward)
- ToF using AC-LGAD (barrel+forward)

EM Calorimetry

- imaging EMCal (barrel)
- W-powder/SciFi (forward)
- PbWO₄ crystals (backward)

Hadron calorimetry

- FeSc (barrel, re-used from sPHENIX)
- Steel/Scint W/Scint (backward/forward)

Physics Derived Tracking Requirements

- High precision primary vertexing
- Secondary vertex separation
- Low material budget
- Good momentum resolution

- Low p_T tracking
- Large Acceptance
- Well Integrated

→ Dedicated physics studies performed to set limits on resolutions (YR 2020)

				Tracking requirements from PWGs						
	Momentum res. Material budget Minimum pT									
		$a_{2}/a_{2} \approx 0.1\% x_{2} \approx 0.5\%$		100-150 MeV/c						
	Pooleword	op/p ~ 0.1 //~p @ 0.5 //		100-150 MeV/c	dca(xy) ~ 30/pT μm ⊕ 40 μm					
	Detector			100-150 MeV/c						
	Delector	Delector	Detector	σp/p ~ 0.05%×p ⊕ 0.5%	-	100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 20 µm			
				100-150 MeV/c	1					
Central	Barrel	Barrel	Barrel	Barrel	Barrel	al Barrel			400 450 Max//a	dep(var) = 20/pT up a F up
Detector							op/p ~ 0.05%*p ⊕ 0.5%	~5% XU or less	100-150 WeV/C	dca(xy) ~ 20/ρ1 μm ⊕ 5 μm
				100-150 MeV/c						
	Forward	σp/p ~ 0.05%×p ⊕ 1%		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 20 µm					
		Forward			100-150 MeV/c	1				
	Derector	$c_{2}/c_{2} \sim 0.1\% \times c_{2} \sim 0.2\%$		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 40 µm					
		op/p ~ 0.1%×p ⊕ 2%		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 60 µm					
(Central)etector	Central Detector Detector Barrel Forward Detector	Central DetectorBackward Detector $\sigma p/p \sim 0.1\% \times p \oplus 0.5\%$ Central DetectorBarrel $\sigma p/p \sim 0.05\% \times p \oplus 0.5\%$ Forward Detector $\sigma p/p \sim 0.05\% \times p \oplus 0.5\%$ Forward Detector $\sigma p/p \sim 0.05\% \times p \oplus 1\%$ Forward Detector $\sigma p/p \sim 0.1\% \times p \oplus 2\%$	Central Detector $\sigma p/p \sim 0.1\% \times p \oplus 0.5\%$ Central Detector $\sigma p/p \sim 0.05\% \times p \oplus 0.5\%$ Barrel $\sigma p/p \sim 0.05\% \times p \oplus 0.5\%$ Forward Detector $\sigma p/p \sim 0.05\% \times p \oplus 1\%$ Forward Detector $\sigma p/p \sim 0.1\% \times p \oplus 1\%$	Central Detector $\sigma p/p \sim 0.1\% \times p \oplus 0.5\%$ $100-150 \text{ MeV/c}$ Backward Detector $\sigma p/p \sim 0.05\% \times p \oplus 0.5\%$ $100-150 \text{ MeV/c}$ Barrel $\sigma p/p \sim 0.05\% \times p \oplus 0.5\%$ $-5\% \times 0 \text{ or less}$ $100-150 \text{ MeV/c}$ Forward Detector $\sigma p/p \sim 0.05\% \times p \oplus 1\%$ $-5\% \times 0 \text{ or less}$ $100-150 \text{ MeV/c}$ $\sigma p/p \sim 0.05\% \times p \oplus 1\%$ $\sigma p/p \sim 0.1\% \times p \oplus 2\%$ $-5\% \times 0 \text{ or less}$ $100-150 \text{ MeV/c}$					

EIC YR Table 11.2

Tracking System

- Silicon tracker occupies a volume of r~43 cm and -105 < z < 135 cm</p>
- MPGD+AC-LGAD detectors fill remaining tracking volume: r~80 cm and -120 < z < 174 cm</p>

Silicon Sensor Technology - MAPS

- Monolithic Active Pixel Sensors (MAPS) chosen for the Silicon Vertex Tracker (SVT)
- "Monolithic" Sensor and electronic contained in same silicon substrate
- Small pixel pitch (< $30\mu m$) \rightarrow needed for vertexing
- Low power consumption \rightarrow low mass
- Moderate Radiation Hardness
- ALICE ITS3 project aims at developing an <u>extremely low mass</u> MAPS sensor for HL-LHC
 - Detector specifications and timeline are very compatible with the EIC

 \rightarrow Sensor being developed through partnership of ITS3 and ePIC-SVT groups

Table 2.1: ITS3 general parameters.							
Beampipe inner/outer radius (mm)		16.0/16.5					
IB Layer parameters	Layer 0	Layer 1	Layer 2				
Radial position (mm)	19.0	25.2	31.5				
Length (sensitive area) (mm)	260	260	260				
Pseudo-rapidity $coverage^{a}$	± 2.5	± 2.3	± 2.0				
Active area (cm^2)	305	407	507				
Pixel sensors dimensions (mm^2)	266 imes 58.7	266 imes 78.3	266 imes 97.8				
Number of pixel sensors / layer		2					
Material budget (% X_0 / layer)		0.07					
Silicon thickness $(\mu m / layer)$	≤ 50						
Pixel size (μm^2)		$O(20 \times 22.5)$					
Power density (mW/cm^2)		40					
NIEL $(1 \text{ MeV } n_{eq} \text{ cm}^{-2})$		10^{13}					
TID (kGray)		10					
^a The pseudorapidity coverage of the detect	or layers refers	to tracks origin	ating from a				

collision at the nominal interaction point (z = 0).

Stitched MAPS

- Normal fabrication light shone through mask with size ~3x3cm (reticle) to pattern circuits on wafer
 - Limited to size of mask
- In "stitching" the mask is subdivided and different sections are repeated across the wafer
 - <u>Can achieve devices larger than the mask</u> → up to wafer-scale

Only need connections at extreme ends

Silicon Tracker Barrel

- Barrel uses stitched MAPS
- 65nm CMOS imaging process
- Low power
- High precision ~20 μ m pitch
- Inner Barrel
 - Directly use ITS3 wafer-scale sensor
- Outer Barrel
 - "Traditional" stave design
- Use EIC Large Area Sensor (EIC-LAS)
 - → Stitched but not wafer-scale modification of ITS3 sensor

Layer	Radius (mm)	Length (mm)	Sensors
LO	36	270	4
L1	48	270	4
L2	120	270	8

Layer	Radius (mm)	Length (mm)	X/X0%
L3	270	540	0.25
L4	420	840	0.55

Silicon Tracker Disks

Disks uses stitched MAPS

- 65nm CMOS imaging process
- Low power
- High precision ~20µm pitch
- Tiled EIC-LAS
 - Front and back of disk

Disk	Technology	$z \ (mm)$	$r_{in} (mm)$	$r_{out} (mm)$
ED0	MAPS	-250	36.76	230
ED1	MAPS	-450	36.76	430
ED2	MAPS	-650	36.76	430
ED3	MAPS	-850	40.06	430
ED4	MAPS	-1050	46.35	430
Bwd MPGD 1	μRWELL	-1100	46.53	500
Bwd MPGD 2	μRWELL	-1200	46.35	500
Disk	Technology	$z \ (mm)$	$r_{in} (\mathrm{mm})$	$r_{out} (\rm{mm})$
HD0	MAPS	250	36.76	230
HD1	MAPS	450	36.76	430
HD2	MAPS	700	38.42	430
HD3	MAPS	1000	54.43	430
HD4	MAPS	1350	70.14	430
Fwd MPGD 1	μRWELL	1480	70.14	500
Fwd MPGD 2	UBWELL	1610	70.14	500
I wa MI OD 2	μ I W LLL	1010	10.11	000

Gaseous Tracker Technology - MPGDs

- Two types of MPGD used: µRWELL and Micromegas
- Barrel Micromegas: CyMBaL
 - Cylindrical Micromegas technology developed for CLAS12 BMT
 - Material ~0.5% X/X $_{0}$ in active areas
 - Spatial resolution ~150µm
 - Timing resolution ~10ns

CyMBaL

CLAS12 BMT

Gaseous Tracker Technology - MPGDs

- Two types of MPGD used: µRWELL and Micromegas
- Barrel µRWELL: µRWELL-BOT (Barrel Outer Tracker)
 - Provides seed point for DIRC
 - Material <2% X/X_0 in active area
 - Spatial Resolution ~150µm
 - Timing resolution ~10ns
- Endcap µRWELLs: µRWELL-ECT
- Comparable to above

A brief history...

Proposal Silicon Vertex Tracker

- From the call for proposals came a new baseline detector:
 - Barrel: 5 Si MAPS layers with 3.3 < r < 22.68 cm complemented by 3 μRWELL layers at r = 33, 51, 77 cm
 - Endcaps: 4 Si MAPS Disks in electron going direction with -106 < z < -25 cm and 5 Si MAPS Disks in hadron going direction with 25 < z < 125 cm

Talks describing this geometry in more detail can be found here <u>https://indico.bnl.gov/event/15489/</u>

Proposal Silicon Vertex Tracker

 $\rightarrow\,$ Update outer barrel material estimate to include support and services

→ PWG momentum resolution requirement no longer met

→ Reconfigure barrel layout

Barrel reconfiguration – Vertex layers

- Radii of vertex layers determined by
 - Size of reticule
 - Beampipe bakeout requirements (5mm clearance)

- Opt for 2 sensors per layer:
 - Would need to modify stitching plan
 - r = 36/42/48 mm

Vertex performance comparisons

- Simulations for 4 vertex configurations:
 - Realistic reticule, 2 half layer $\stackrel{\circ}{\mathbb{N}}$
 - r = 36/42/48 mm
 - Active length = 24cm
 - Realistic reticule, 4 quarter layer:
 - r = 36/48/60 mm
 - Active length = 27cm

Some difference in $\mathsf{DCA}_{\mathsf{T}}$

- \rightarrow depends distance between r₁ and r₂
 - \rightarrow (r₂ r₁) is an important parameter

- Proposal config:
- r = 33/43.5/54 mm
- Proposal config moved at 5 mm from beam pipe
- r = 36/46.5/57 mm

Barrel Reconfiguration

Slide from E. Sichtermann <u>https://indico.bnl.gov/event/16261/</u>

Craterlake Barrel Performance

Disks Optimisation

- Disks spread over **largest lever arm** available
- # of Disks is compromise between resolution and redundancy
- Many studies performed throughout yellow report and call for proposals
- More disks increase material, giving worse resolution, but increasing redundancy
- Larger lever arm between 1st and 2nd disk improves DCA_T resolution
- <5 disks gives insufficient η coverage</p>

Craterlake Disks Performance

- 5 Disks per side
- Occupy full available lever arm
- Challenging requirements in backwards region with 1.7T field

DISKS	+z [mm]	-z [mm]	X/X0 %
E/HD0	250	-250	0.24
E/HD1	450	-450	0.24
E/HD2	700	-650	0.24
E/HD3	1000	-900	0.24
E/HD4	1350	-1150	0.24

Now the current version

Tracking Performance – Momentum Resolution

- Requirements on relative momentum resolution met in central and most of forward region
- Backward requirement <u>still challenging to meet</u>
 - High resolution electromagnetic calorimetry in this region \rightarrow may provide better reconstruction

Tracking Performance – Transverse Pointing Resolution

- Performance consistent with requirement line for all but largest pseudorapidities
 - Next step for ePIC \rightarrow Understand how this impacts the physics

Requirement

			Transverse pointing res.
η			
-3.5 to -3.0			
-3.0 to -2.5		Backward	dca(xy) ~ 30/pT µm ⊕ 40 µm
-2.5 to -2.0		Detector	
-2.0 to -1.5			dca(xy) ~ 30/pT μm ⊕ 20 μm
-1.5 to -1.0			
-1.0 to -0.5			
-0.5 to 0	Central	Damal	$dc_2(xy) \sim 20/nT \mu m = 5 \mu m$
0 to 0.5	Detector	Darrei	ασα(λγ) ~ 20/ρ1 μπ & 5 μπ
0.5 to 1.0			
1.0 to 1.5			
1.5 to 2.0		Forward	dca(xy) ~ 30/pT µm ⊕ 20 µm
2.0 to 2.5		Detector	
2.5 to 3.0		Delector	dca(xy) ~ 30/pT µm ⊕ 40 µm
3.0 to 3.5			dca(xy) ~ 30/pT µm ⊕ 60 µm

Particle Rates

- EIC bunch crossing frequency: 98.5 MHz (roughly every 10ns)
- Interaction frequency is orders of magnitude lower:
- Physics (DIS) events up to 500 kHz
- Also background processes: interactions of beams with residual gas in the beampipe
 → Vacuum improves with run time, beam-gas rate decreases
- Synchrotron radiation reduced by 5µm gold coating applied to be ampipe \rightarrow negligible impact

Rate (kHz)	5×41	5×100	10×100	10×275	18×275	Vacuum
DIS ep	12.5	129	184	500	83	-
p beam-gas	12.2	22.0	31.9	32.6	22.5	$10000\mathrm{A}\mathrm{h}$
p beam-gas	131.1	236.4	342.8	350.3	241.8	$100 \mathrm{A}\mathrm{h}$
e beam-gas	2181.97	2826.38	3177.25	3177.25	316.94	$10000\mathrm{Ah}$

Radiation levels

- Example study:
- Assume 10 years of running at top luminosity \rightarrow 100% run time for 6 months per year running
- 10 GeV e⁻ on 275 GeV p DIS events
- 10 GeV e⁻ and 275 GeV p beam-gas interactions

Total Dose and Fluence over SVT Envelope

- Total Ionising Dose <u>below 1Mrad</u>
 - Maximal in the beampipe
 - \rightarrow 10-100krad or lower in tracking layers
- Fluence $\lesssim 5 \times 10^{13} n_{eq}^{2}/cm^{2}$
 - Also maximal in the beampipe

 → typically <10¹¹-10¹² in tracking layers

Within current ITS3 specifications

R (cm)

R (cm)

20

-150

-100

-50

10¹⁰

150

Z (cm)

100

Hit Rates in the SVT

- Example study:
- 10 GeV e⁻ on 100 GeV p DIS events
- 10 GeV e⁻ and 100 GeV p beam-gas interactions
- SR from 10 GeV e⁻
- Background events dominate hit rates in SVT
 - 3-5 MHz in IB and disks
 - <1 MHz in OB
- For 2µs frame rate and 20.8x22.8µm² pixels → maximum hit occupancy ~10⁻⁷ per pixel per frame
 - Not a challenge for sensor + readout electronics

	Hits/pixel/frame		Hits/pixel/frame		Hits/pixel/frame
LO	7.00E-08	ED0	1.96E-08	HD0	2.11E-08
L1	5.65E- 0 8	ED1	7.07E-09	HD1	7.87E-09
L2	6.56E- <mark>0</mark> 9	ED2	6.81E-09	HD2	7.68E-09
L3	8.85E-10	ED3	6.40E-09	HD3	6.59E-09
L4	3.80E-10	ED4	5.76E-09	HD4	5.62E-09

SVT Acceptance at large $|\eta|$

- Disk inner openings are not circular
- Constructed from tiles of rectangular sensors

 → inner opening is square-ish
- Beams collide with 25mrad crossing angle
 → inner opening shifted to accommodate
 - \rightarrow Offset is larger for disks further from the IP
- Disks provide full acceptance for r > r_{low}
- Partial acceptance for $r_{min} < r < r_{low}$
- No acceptance for r < r_{min}

SVT Acceptance at large $|\eta|$

- Require 3 or more hits to reconstruct a track
- Simulate single $e^{-}(\eta < 0)$ and $\pi^{-}(\eta > 0)$
- "Reconstructed" if >2 hits

<u>Only 3 Si disks for |η|>3.3</u>

- → Efficiency becomes important
- → Maximise active area around opening

Brief Interlude – DIS Kinematics

SVT Acceptance vs $x-Q^2$

- Inclusive kinematics can be fully calculated from the energy and angle of the scattered electron
 - Generate DIS events (Pythia8 18x275 GeV², 1<Q²<10 GeV²)
 - Mapping between electron scattering angle and acceptance vs $\boldsymbol{\eta}$
- Evaluate disk acceptance in x-Q² bins \rightarrow see where it impacts measurement plane

Increasing Realism...

- Full detector is involved in reconstructing DIS electrons
- Track reconstruction has to be able to reconstruct the track → <u>some events lost along the way</u>
- Typical requirement to find electron is a matched cluster in the electromagnetic calorimeter
- Simulate single electrons in full detector
 - Require: reconstructed track, 1+ ECAL clusters
- Isolines are drawn for y=0.01, 0.99 (blue) and Q²=0.01, 0.1, 1, 10 GeV² (red)
- Acceptance losses at:
 - Low η (edge of disk acceptance)
 - Low p/p_T (track reconstruction fails or electron doesn't reach ECAL)

Summary of Tracking Studies

- The Tracking System for ePIC is required to be low mass and high precision
 - Achieved using a hybrid tracking system of MAPS complemented by MPGDs
- Tracking performance (momentum and pointing resolution) is within reach of Yellow Report targets for most of the range
 - Dedicated physics studies required to evaluate if these requirements are sufficient
- The EIC will be subject to beam related backgrounds of Synchrotron Radiation and beam-gas interactions
 - Average pixel hit rate in the SVT layers: 10^{-7} per pixel per frame \rightarrow does not pose a challenge for the sensor + readout electronics
- Radiation load is manageable: Dose ~100krad and Fluence ~10¹² n_{eq}^2/cm^2 in tracker
- Large acceptance for DIS electrons across kinematic plane

Inclusive DIS at the EIC

- Inclusive DIS provides access to collinear parton density functions
- Even for unpolarised ep, the EIC will have a huge impact!

Inclusive DIS at the EIC

- The EIC provides a unique environment for the study of nucleons/nuclei with an Inclusive Physics programme:
 - High luminosity ep collider
 - Polarised proton/light nucleus collider
 - eA collider
- For **unpolarised** $p/A measure F_2, F_L$

$$\sigma_r = F_2(x, Q^2) - \frac{g}{Y_\perp} F_L(x, Q^2)$$

• For **polarised** $p/^{3}He - extract g_{1}$

$$\frac{\Delta\sigma}{2} = \frac{1}{2} \left[\frac{d^2 \sigma^{\uparrow\downarrow}}{dx dQ^2} - \frac{d^2 \sigma^{\uparrow\uparrow}}{dx dQ^2} \right] \simeq \frac{4\pi\alpha^2}{Q^4} y(2-y) g_1(x,Q^2)$$

- Vary c.o.m. energy/polarisation \rightarrow measure cross section vs x-Q²
- High precision x-Q² reconstruction required!

Reconstructing Inclusive Kinematics

- Inclusive DIS kinematics can be reconstructed from <u>two measured quantities</u> $\rightarrow \vec{D} = \{E_e, \theta_e, \delta_h, p_{t,h}\}$
 - Where δ_h is $E p_z$ sum of all particles in the Hadronic Final State: $\Sigma E_i(1 \cos \theta_i)$
 - \mathbf{P}_{th} is the transverse momentum of the HFS
- Resolution of conventional reconstruction methods depend on:
 - Event x-Q²
 - Detector acceptance and resolution effects
 - Size of radiative processes

Electron method	JB method	Σ method	Double Angle method			
$Q^2 = 2E_e E'_e (1 + \cos \theta_e)$	$y = \frac{\delta_h}{2E_e}$	$y_{\Sigma} = \frac{\delta_h}{\delta_h + \delta_e}$	$y_{DA} = \frac{\alpha_h}{\alpha_h + \alpha_e}$	$\alpha_{e/h} = \tan \frac{\theta_{e/h}}{2}$		
$y = 1 - \frac{E'_e}{2E_e} (1 - \cos \theta_e)$	$Q^2 = \frac{p_{t,h}^2}{1-y}$	$Q_{\Sigma}^2 = \frac{p_{t,e}^2}{1 - y_{\Sigma}}$	$Q_{DA}^2 = \frac{4E_e^2}{\alpha_e(\alpha_e + \alpha_h)}$			

Reconstructing Inclusive Kinematics with QED radiation

- Presence of QED radiation changes event kinematics

 Frrors in reconstruction when only using two measured quantities
- FSR not too problematic: typically collinear to scattered electron → measured together in ECAL
- ISR more difficult to account for: reduces electron beam energy, radiated photon typically disappears down beampipe

Kinematic Reconstruction for EIC – A Brief History

No single method wins everywhere!

- Detailed simulations performed, reconstruction methods chosen to optimise resolutions throughout phase space
 - → Resolution throughout phase space allowing 5 (log) bins per decade in x and Q^2
- Coverage driven by acceptance:
 - $0.01 < y < 0.95, Q^2 > 1 \text{ GeV}^2$
- Lower y accessible → however it's easier to rely on overlap between data at different √s

What if we use all available information?

- Best reconstruction should be possible using all measured quantities simultaneously
 - Some have proposed using Neural Networks https://arxiv.org/abs/2110.05505
 - Can alternatively perform a kinematic fit of measured quantities.

Kinematic Fit (KF) Reconstruction

- Kinematic fit of <u>all 4</u> measured quantities:
- Extract DIS kinematics, and energy of a possible ISR photon: $\vec{\lambda} = \{x, y, E_{v}\}$

Smeared EIC pseudodata

- EIC DIS events generated with Djangoh
- 18x275, Q²>1 GeV²
- Smear by estimated resolutions

- $\sigma(\theta_e) = 0.1 \text{mrad}$
- σ(E_e) / E = 11% /sqrt(E) ⊕
 2%

44

• $\sigma(\delta_h) / \delta_h = 25\%$

Smeared EIC pseudodata (No ISR)

Smearing resolutions used as input for KF

$$P(\overrightarrow{D}|\overrightarrow{\lambda}) = \frac{1}{\sqrt{2\pi}\sigma_E} \exp{-\frac{(E_e - E_e^{\lambda})^2}{2\sigma_E^2}} \times \frac{1}{\sqrt{2\pi}\sigma_\theta} \exp{-\frac{(\theta_e - \theta_e^{\lambda})^2}{2\sigma_\theta^2}} \times \frac{1}{\sqrt{2\pi}\sigma_{\delta_h}} \exp{-\frac{(\delta_h - \delta_h^{\lambda})^2}{2\sigma_{\delta_h}^2}} \times \frac{1}{\sqrt{2\pi}\sigma_{p_t^h}} \exp{-\frac{(p_t^h - p_t^{h\lambda})^2}{2\sigma_{p_t^h}^2}}.$$

Prior as before:

$$P_0(\overrightarrow{\lambda}) = \frac{1 + (1 - y)^2}{x^3 y^2} \frac{1 + (1 - E_\gamma/E_0)^2}{E_\gamma/E_0}$$

- Compare y resolutions:
 - KF method meets or exceeds conventional

Smeared EIC pseudodata (W/ ISR)

- Compare true and measured ISR energy distributions
 - Distribution well reproduced for higher E,
 - Ratio within 30% for $E_v > 3 \text{ GeV}$
 - Within 10% for E_v > 4 GeV
- Reasonable energy resolution

Fully Simulated ePIC pseudodata (No ISR)

- $\sigma_E = 0.055 \cdot p \oplus 0.45 \text{ in GeV}$ $\sigma_\theta = 72/p_t \oplus 2.8 \text{ in mrad}$ $\sigma_{\delta_h} = 0.25 \cdot \delta_h \text{ in GeV}$ $\sigma_{p_t^h} = 0.25 \cdot p_t^h \text{ in GeV}.$
 - Parametrised ePIC full sim resolutions
 - Pythia8 NCDIS
 - Craterlake 23.12.0
 - Q² > 100 GeV²
 - Ele from tracking

00

Fully Simulated ePIC pseudodata (No ISR)

- KF gives comparable y resolution to electron method at high y
- Loses at low y to DA method

HFS Correlations

- Correlations in HFS variables mostly due to energy fluctuations in calorimeters
 - Introduce extra term that reduces likelihood if p_t is overestimated and δ underestimated or vice versa:

Fully Simulated ePIC pseudodata (No ISR) – HFS Correlation

- Performance of KF recovered at low y!
 - Not perfect here → but performance comparable to DA method achieved at low y, while maintaining electron method performance at high y
- Further improvements in likelihood possible
 → HFS resolutions and correlation parametrisations

What about ISR?

- ISR energy can be determined due to energy/momentum conservation
- If electron beam is -z and hadron beam is +z then sum of the E-p_z value of all particles in the event $\rightarrow \Sigma_{total} = 2E_{e,beam}$
- If the energy of the electron beam is reduced by the emission of an ISR photon then

 $E_{y} = E_{e,beam} - \frac{1}{2}\Sigma_{total}$

• This relation is used implicitly in the Σ -method, where $2E_{_{e,beam}}$ is replaced by $(\delta_{_{e}}+\delta_{_{h}})$

$$y_{\Sigma} = \frac{\delta_h}{\delta_h + \delta_e}$$
$$Q_{\Sigma}^2 = \frac{p_{t,e}^2}{1 - y_{\Sigma}}$$

 δ_{h} is $E - p_{z}$ sum of all particles in the HFS δ_{e} is $E - p_{z}$ of electron

- The **resolution on reconstructed** Σ_{total} **is poor** \rightarrow need to be careful not to attribute to ISR that which could be caused by a resolution effect
 - Prior for E_{y} in Kinematic Fit helps avoid this

Kinematic Fitting at H1

- Simulations are one thing but...
 - Need full simulations with ISR?
 - Will method work with real data?
- Previous ep collider: HERA (@ DESY)
 - H1 was one of 2 general purpose detectors
- Perform kinematic fit reconstruction on H1 e⁺p 2003/2004 MC+Data
- Use a standard H1 high Q² event selection
 - $E_e > 11$ GeV in LAr Calorimeter
 - $(E-p_z)_{total}$ cuts removed so still have ISR
 - + For plotting, require 0.01 < $y_{e\Sigma}^{} <$ 0.6 and Q^2 > 200 GeV^2

ISR from Kinematic Fitting at H1

but drastically overestimates amount ISR

ISR from Kinematic Fitting at H1

Comparison to Data

Good agreement between number of events predicted by KF for data+MC!

Why identify ISR?

- ISR lowers the electron beam energy
 - Scattered electrons in low Q² events don't enter main detector
 - \rightarrow lower energy electrons scattered at larger angles \rightarrow may be within the detector acceptance
 - → kinematic reach extended

Summary of Kinematic Reconstruction

- Wealth of opportunities for inclusive physics at the EIC
- Methods using HFS information can improve resolution depending on conditions
 - Can achieve good resolutions if best method is chosen for each x-Q² bin
- Kinematic fitting method explored:
 - The DA method may outperform the basic (uncorrelated) KF at low y
 - Extending KF method to account for correlations in the HFS recovers this performance \rightarrow delivers y resolution comparable to best method for each y bin

- ISR reconstruction improved on in KF method compared to Σ -like methods
- KF method works for realistic detector conditions

- The EIC will greatly improve our understanding of nucleon/nuclear structure
- The EIC Physics Programme sets stringent requirements on the design and performance of the tracking detector
 - The chosen technologies should be able to deliver the physics, and operate well in the conditions of the EIC
- Inclusive DIS measurements require an accurate reconstruction of the kinematics
 - This can be achieved through the optimal use of the measured quantities
 - An event-by-event kinematic fit may provide a single method that gives an optimal reconstruction and extends the accessible phase space

- Compare resolutions: no ISR to with ISR on
 - "Realistic" $\boldsymbol{\Sigma}_{_{tot}}$ cut of 31 GeV applied to remove high energy ISR

Ø 6

- Some, but not big, difference between observed resolutions
- Even for the electron method!

H1 Resolution on y

No Correlations

HFS Correlations

H1 Resolution on Q^2

No Correlations

HFS Correlations

H1 Resolution on x

No Correlations

HFS Correlations

H1 ISR reconstruction

H1 Data and MC (ISR On)

- KF reconstruction is applied with a likelihood function constructed from the following resolutions:
 - $\sigma(\theta_e) = 4mrad$
 - $\sigma(E_{e}) / E = 11\% / sqrt(E) \oplus 1\%$
 - $\sigma(\delta_{h}) / \delta_{h} = 13.5\%$
 - $\sigma(p_{_{T,h}}) / p_{_{T,h}} = 54\% / sqrt(p_{_{T,h}}) \oplus 4\%$
- No correlation term included for H1 studies
- Good agreement for pulls from data and Djangoh

$$g = \frac{D_{i,fitted} - D_{i,reco}}{RMS_{MC}}$$

© 0

Truth Smearing correlations

Kinematic Reconstruction for EIC – A Brief History

 Assessment of relative performance of reconstruction methods for measured phase space in ECCE and ATHENA proposals (2021)

